⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 prod.mod

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 MOD
字号:
# PROD, a multiperiod production model## References:# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language# for Mathematical Programming." Management Science 36 (1990) 519-554.###  PRODUCTION SETS AND PARAMETERS  ###set prd 'products';    # Members of the product groupparam pt 'production time' {prd} > 0;                        # Crew-hours to produce 1000 unitsparam pc 'production cost' {prd} > 0;                        # Nominal production cost per 1000, used                        # to compute inventory and shortage costs###  TIME PERIOD SETS AND PARAMETERS  ###param first > 0 integer;                        # Index of first production period to be modeledparam last > first integer;                        # Index of last production period to be modeledset time 'planning horizon' := first..last;###  EMPLOYMENT PARAMETERS  ###param cs 'crew size' > 0 integer;                        # Workers per crewparam sl 'shift length' > 0;                        # Regular-time hours per shiftparam rtr 'regular time rate' > 0;                        # Wage per hour for regular-time laborparam otr 'overtime rate' > rtr;                        # Wage per hour for overtime laborparam iw 'initial workforce' >= 0 integer;                        # Crews employed at start of first periodparam dpp 'days per period' {time} > 0;                        # Regular working days in a production periodparam ol 'overtime limit' {time} >= 0;                        # Maximum crew-hours of overtime in a periodparam cmin 'crew minimum' {time} >= 0;                        # Lower limit on average employment in a periodparam cmax 'crew maximum' {t in time} >= cmin[t];                        # Upper limit on average employment in a periodparam hc 'hiring cost' {time} >= 0;                        # Penalty cost of hiring a crewparam lc 'layoff cost' {time} >= 0;                        # Penalty cost of laying off a crew###  DEMAND PARAMETERS  ###param dem 'demand' {prd,first..last+1} >= 0;                        # Requirements (in 1000s)                        # to be met from current production and inventoryparam pro 'promoted' {prd,first..last+1} logical;                        # true if product will be the subject                        # of a special promotion in the period###  INVENTORY AND SHORTAGE PARAMETERS  ###param rir 'regular inventory ratio' >= 0;                        # Proportion of non-promoted demand                        # that must be in inventory the previous periodparam pir 'promotional inventory ratio' >= 0;                        # Proportion of promoted demand                        # that must be in inventory the previous periodparam life 'inventory lifetime' > 0 integer;                        # Upper limit on number of periods that                        # any product may sit in inventoryparam cri 'inventory cost ratio' {prd} > 0;                        # Inventory cost per 1000 units is                        # cri times nominal production costparam crs 'shortage cost ratio' {prd} > 0;                        # Shortage cost per 1000 units is                        # crs times nominal production costparam iinv 'initial inventory' {prd} >= 0;                        # Inventory at start of first period; age unknownparam iil 'initial inventory left' {p in prd, t in time}              := iinv[p] less sum {v in first..t} dem[p,v];                        # Initial inventory still available for allocation                        # at end of period tparam minv 'minimum inventory' {p in prd, t in time}              := dem[p,t+1] * (if pro[p,t+1] then pir else rir);                        # Lower limit on inventory at end of period t###  VARIABLES  ###var Crews{first-1..last} >= 0;                        # Average number of crews employed in each periodvar Hire{time} >= 0;    # Crews hired from previous to current periodvar Layoff{time} >= 0;  # Crews laid off from previous to current periodvar Rprd 'regular production' {prd,time} >= 0;                        # Production using regular-time labor, in 1000svar Oprd 'overtime production' {prd,time} >= 0;                        # Production using overtime labor, in 1000svar Inv 'inventory' {prd,time,1..life} >= 0;                        # Inv[p,t,a] is the amount of product p that is                        # a periods old -- produced in period (t+1)-a --                        # and still in storage at the end of period tvar Short 'shortage' {prd,time} >= 0;                        # Accumulated unsatisfied demand at the end of period t###  OBJECTIVE  ###minimize cost:    sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] +    sum {t in time} hc[t] * Hire[t] +    sum {t in time} lc[t] * Layoff[t] +    sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] +    sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] +    sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t];                        # Full regular wages for all crews employed, plus                        # penalties for hiring and layoffs, plus                        # wages for any overtime worked, plus                        # inventory and shortage costs                        # (All other production costs are assumed                        # to depend on initial inventory and on demands,                        # and so are not included explicitly.)###  CONSTRAINTS  ###rlim 'regular-time limit' {t in time}:    sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t];                        # Hours needed to accomplish all regular-time                        # production in a period must not exceed                        # hours available on all shiftsolim 'overtime limit' {t in time}:    sum {p in prd} pt[p] * Oprd[p,t] <= ol[t];                        # Hours needed to accomplish all overtime                        # production in a period must not exceed                        # the specified overtime limitempl0 'initial crew level':  Crews[first-1] = iw;                        # Use given initial workforceempl 'crew levels' {t in time}:  Crews[t] = Crews[t-1] + Hire[t] - Layoff[t];                        # Workforce changes by hiring or layoffsemplbnd 'crew limits' {t in time}:  cmin[t] <= Crews[t] <= cmax[t];                        # Workforce must remain within specified boundsdreq1 'first demand requirement' {p in prd}:    Rprd[p,first] + Oprd[p,first] + Short[p,first]                             - Inv[p,first,1] = dem[p,first] less iinv[p];dreq 'demand requirements' {p in prd, t in first+1..last}:    Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1]                          + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a])                                                  = dem[p,t] less iil[p,t-1];                        # Production plus increase in shortage plus                        # decrease in inventory must equal demandireq 'inventory requirements' {p in prd, t in time}:    sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t];                        # Inventory in storage at end of period t                        # must meet specified minimumizero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}:    Inv[p,first+v-1,a] = 0;                        # In the vth period (starting from first)                        # no inventory may be more than v periods old                        # (initial inventories are handled separately)ilim1 'new-inventory limits' {p in prd, t in time}:    Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t];                        # New inventory cannot exceed                        # production in the most recent periodilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}:    Inv[p,t,a] <= Inv[p,t-1,a-1];                        # Inventory left from period (t+1)-p                        # can only decrease as time goes on###  DATA  ###data;set prd := 18REG 24REG 24PRO ;param first :=  1 ;param last  := 13 ;param life  :=  2 ;param cs := 18 ;param sl :=  8 ;param iw :=  8 ;param rtr := 16.00 ;param otr := 43.85 ;param rir :=  0.75 ;param pir :=  0.80 ;param :         pt       pc        cri       crs      iinv   :=  18REG      1.194     2304.     0.015     1.100      82.0  24REG      1.509     2920.     0.015     1.100     792.2  24PRO      1.509     2910.     0.015     1.100       0.0   ;param :     dpp        ol      cmin      cmax        hc        lc   :=  1        19.5      96.0       0.0       8.0      7500      7500  2        19.0      96.0       0.0       8.0      7500      7500  3        20.0      96.0       0.0       8.0      7500      7500  4        19.0      96.0       0.0       8.0      7500      7500  5        19.5      96.0       0.0       8.0     15000     15000  6        19.0      96.0       0.0       8.0     15000     15000  7        19.0      96.0       0.0       8.0     15000     15000  8        20.0      96.0       0.0       8.0     15000     15000  9        19.0      96.0       0.0       8.0     15000     15000 10        20.0      96.0       0.0       8.0     15000     15000 11        20.0      96.0       0.0       8.0      7500      7500 12        18.0      96.0       0.0       8.0      7500      7500 13        18.0      96.0       0.0       8.0      7500      7500   ;param dem (tr) :          18REG     24REG     24PRO   :=  1        63.8    1212.0       0.0  2        76.0     306.2       0.0  3        88.4     319.0       0.0  4       913.8     208.4       0.0  5       115.0     298.0       0.0  6       133.8     328.2       0.0  7        79.6     959.6       0.0  8       111.0     257.6       0.0  9       121.6     335.6       0.0 10       470.0     118.0    1102.0 11        78.4     284.8       0.0 12        99.4     970.0       0.0 13       140.4     343.8       0.0 14        63.8    1212.0       0.0   ;param pro (tr) :          18REG     24REG     24PRO   :=  1           0         1         0  2           0         0         0  3           0         0         0  4           1         0         0  5           0         0         0  6           0         0         0  7           0         1         0  8           0         0         0  9           0         0         0 10           1         0         1 11           0         0         0 12           0         0         0 13           0         1         0 14           0         1         0   ;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -