⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 transp_csv.mod

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 MOD
字号:
# A TRANSPORTATION PROBLEM## This problem finds a least cost shipping schedule that meets# requirements at markets and supplies at factories.##  References:#              Dantzig G B, "Linear Programming and Extensions."#              Princeton University Press, Princeton, New Jersey, 1963,#              Chapter 3-3.set I;/* canning plants */set J;/* markets */set K dimen 2;/* transportation lane */set L;/* parameters */param a{i in I};/* capacity of plant i in cases */param b{j in J};/* demand at market j in cases */param d{i in I, j in J};/* distance in thousands of miles */param e{l in L};/* parameters */param f;/* freight in dollars per case per thousand miles */table tab_plant IN "CSV" "plants.csv" :  I <- [plant], a ~ capacity;table tab_market IN "CSV" "markets.csv" :  J <- [market], b ~ demand;table tab_distance IN "CSV" "distances.csv" :  K <- [plant, market], d ~ distance;table tab_parameter IN "CSV" "parameters.csv" :  L <- [parameter], e ~ value ;param c{i in I, j in J} := e['transport cost'] * d[i,j] / 1000;/* transport cost in thousands of dollars per case */var x{(i,j) in K} >= 0;/* shipment quantities in cases */minimize cost: sum{(i,j) in K} c[i,j] * x[i,j];/* total transportation costs in thousands of dollars */s.t. supply{i in I}: sum{(i,j) in K} x[i,j] <= a[i];/* observe supply limit at plant i */s.t. demand{j in J}: sum{(i,j) in K} x[i,j] >= b[j];/* satisfy demand at market j */solve;table tab_result{(i,j) in K} OUT "CSV" "result.csv" :  i ~ plant, j ~ market, x[i,j] ~ shipment;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -