📄 aprioriitemset.java
字号:
premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; } help /= 2; } else { premise.m_items[i] = -1; consequence.m_items[i] = -1; } premise.m_counter = ((Integer)hashtableForPremise.get(premise)).intValue(); consequenceUnconditionedCounter = ((Integer)hashtableForConsequence.get(consequence)).intValue(); if (metricType == 0) { contingencyTable[0][0] = (double)(consequence.m_counter); contingencyTable[0][1] = (double)(premise.m_counter - consequence.m_counter); contingencyTable[1][0] = (double)(consequenceUnconditionedCounter - consequence.m_counter); contingencyTable[1][1] = (double)(numTransactions - premise.m_counter - consequenceUnconditionedCounter + consequence.m_counter); chiSquared = ContingencyTables.chiSquared(contingencyTable, false); metric = confidenceForRule(premise, consequence); if ((!(metric < minMetric)) && (!(chiSquared > significanceLevel))) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(metric)); lift.addElement(new Double(liftForRule(premise, consequence, consequenceUnconditionedCounter))); lev.addElement(new Double(leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); conv.addElement(new Double(convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); } } else { double tempConf = confidenceForRule(premise, consequence); double tempLift = liftForRule(premise, consequence, consequenceUnconditionedCounter); double tempLev = leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); switch(metricType) { case 1: metric = tempLift; break; case 2: metric = tempLev; break; case 3: metric = tempConv; break; default: throw new Exception("ItemSet: Unknown metric type!"); } if (!(metric < minMetric)) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(tempConf)); lift.addElement(new Double(tempLift)); lev.addElement(new Double(tempLev)); conv.addElement(new Double(tempConv)); } } } } rules[0] = premises; rules[1] = consequences; rules[2] = conf; rules[3] = lift; rules[4] = lev; rules[5] = conv; return rules; } /** * Subtracts an item set from another one. * * @param toSubtract the item set to be subtracted from this one. * @return an item set that only contains items form this item sets that * are not contained by toSubtract */ public final AprioriItemSet subtract(AprioriItemSet toSubtract) { AprioriItemSet result = new AprioriItemSet(m_totalTransactions); result.m_items = new int[m_items.length]; for (int i = 0; i < m_items.length; i++) if (toSubtract.m_items[i] == -1) result.m_items[i] = m_items[i]; else result.m_items[i] = -1; result.m_counter = 0; return result; } /** * Generates rules with more than one item in the consequence. * * @param rules all the rules having (k-1)-item sets as consequences * @param numItemsInSet the size of the item set for which the rules * are to be generated * @param numItemsInConsequence the value of (k-1) * @param minConfidence the minimum confidence a rule has to have * @param hashtables the hashtables containing all(!) previously generated * item sets * @return all the rules having (k)-item sets as consequences */ private final FastVector[] moreComplexRules(FastVector[] rules, int numItemsInSet, int numItemsInConsequence, double minConfidence, FastVector hashtables) { AprioriItemSet newPremise; FastVector[] result, moreResults; FastVector newConsequences, newPremises = new FastVector(), newConf = new FastVector(); Hashtable hashtable; if (numItemsInSet > numItemsInConsequence + 1) { hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2); newConsequences = mergeAllItemSets(rules[1], numItemsInConsequence - 1, m_totalTransactions); Enumeration enu = newConsequences.elements(); while (enu.hasMoreElements()) { AprioriItemSet current = (AprioriItemSet)enu.nextElement(); current.m_counter = m_counter; newPremise = subtract(current); newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue(); newPremises.addElement(newPremise); newConf.addElement(new Double(confidenceForRule(newPremise, current))); } result = new FastVector[3]; result[0] = newPremises; result[1] = newConsequences; result[2] = newConf; pruneRules(result, minConfidence); moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1, minConfidence, hashtables); if (moreResults != null) for (int i = 0; i < moreResults[0].size(); i++) { result[0].addElement(moreResults[0].elementAt(i)); result[1].addElement(moreResults[1].elementAt(i)); result[2].addElement(moreResults[2].elementAt(i)); } return result; } else return null; } /** * Returns the contents of an item set as a string. * * @param instances contains the relevant header information * @return string describing the item set */ public final String toString(Instances instances) { return super.toString(instances); } /** * Converts the header info of the given set of instances into a set * of item sets (singletons). The ordering of values in the header file * determines the lexicographic order. * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static FastVector singletons(Instances instances) throws Exception { FastVector setOfItemSets = new FastVector(); ItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) throw new Exception("Can't handle numeric attributes!"); for (int j = 0; j < instances.attribute(i).numValues(); j++) { current = new AprioriItemSet(instances.numInstances()); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) current.m_items[k] = -1; current.m_items[i] = j; setOfItemSets.addElement(current); } } return setOfItemSets; } /** * Merges all item sets in the set of (k-1)-item sets * to create the (k)-item sets and updates the counters. * * @param itemSets the set of (k-1)-item sets * @param size the value of (k-1) * @param totalTrans the total number of transactions in the data * @return the generated (k)-item sets */ public static FastVector mergeAllItemSets(FastVector itemSets, int size, int totalTrans) { FastVector newVector = new FastVector(); ItemSet result; int numFound, k; for (int i = 0; i < itemSets.size(); i++) { ItemSet first = (ItemSet)itemSets.elementAt(i); out: for (int j = i+1; j < itemSets.size(); j++) { ItemSet second = (ItemSet)itemSets.elementAt(j); result = new AprioriItemSet(totalTrans); result.m_items = new int[first.m_items.length]; // Find and copy common prefix of size 'size' numFound = 0; k = 0; while (numFound < size) { if (first.m_items[k] == second.m_items[k]) { if (first.m_items[k] != -1) numFound++; result.m_items[k] = first.m_items[k]; } else break out; k++; } // Check difference while (k < first.m_items.length) { if ((first.m_items[k] != -1) && (second.m_items[k] != -1)) break; else { if (first.m_items[k] != -1) result.m_items[k] = first.m_items[k]; else result.m_items[k] = second.m_items[k]; } k++; } if (k == first.m_items.length) { result.m_counter = 0; newVector.addElement(result); } } } return newVector; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -