⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aprioriitemset.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
	      premise.m_items[i] = -1;	      consequence.m_items[i] = m_items[i];	    }	    help /= 2;	  } else {	    premise.m_items[i] = -1;	    consequence.m_items[i] = -1;	  }	premise.m_counter = ((Integer)hashtableForPremise.get(premise)).intValue();	consequenceUnconditionedCounter =	  ((Integer)hashtableForConsequence.get(consequence)).intValue();	if (metricType == 0) {	  contingencyTable[0][0] = (double)(consequence.m_counter);	  contingencyTable[0][1] = (double)(premise.m_counter - consequence.m_counter);	  contingencyTable[1][0] = (double)(consequenceUnconditionedCounter -					    consequence.m_counter);	  contingencyTable[1][1] = (double)(numTransactions - premise.m_counter -					    consequenceUnconditionedCounter +					    consequence.m_counter);	  chiSquared = ContingencyTables.chiSquared(contingencyTable, false);		  metric = confidenceForRule(premise, consequence);		  if ((!(metric < minMetric)) &&	      (!(chiSquared > significanceLevel))) {	    premises.addElement(premise);	    consequences.addElement(consequence);	    conf.addElement(new Double(metric));	    lift.addElement(new Double(liftForRule(premise, consequence, 				       consequenceUnconditionedCounter)));	    lev.addElement(new Double(leverageForRule(premise, consequence,				     premise.m_counter,				     consequenceUnconditionedCounter)));	    conv.addElement(new Double(convictionForRule(premise, consequence,				       premise.m_counter,				       consequenceUnconditionedCounter)));	  }	} else {	  double tempConf = confidenceForRule(premise, consequence);	  double tempLift = liftForRule(premise, consequence, 					consequenceUnconditionedCounter);	  double tempLev = leverageForRule(premise, consequence,					   premise.m_counter,					   consequenceUnconditionedCounter);	  double tempConv = convictionForRule(premise, consequence,					      premise.m_counter,					      consequenceUnconditionedCounter);	  switch(metricType) {	  case 1: 	    metric = tempLift;	    break;	  case 2:	    metric = tempLev;	    break;	  case 3: 	    metric = tempConv;	    break;	  default:	    throw new Exception("ItemSet: Unknown metric type!");	  }	  if (!(metric < minMetric)) {	    premises.addElement(premise);	    consequences.addElement(consequence);	    conf.addElement(new Double(tempConf));	    lift.addElement(new Double(tempLift));	    lev.addElement(new Double(tempLev));	    conv.addElement(new Double(tempConv));	  }	}      }    }    rules[0] = premises;    rules[1] = consequences;    rules[2] = conf;    rules[3] = lift;    rules[4] = lev;    rules[5] = conv;    return rules;  }  /**   * Subtracts an item set from another one.   *   * @param toSubtract the item set to be subtracted from this one.   * @return an item set that only contains items form this item sets that   * are not contained by toSubtract   */  public final AprioriItemSet subtract(AprioriItemSet toSubtract) {    AprioriItemSet result = new AprioriItemSet(m_totalTransactions);        result.m_items = new int[m_items.length];       for (int i = 0; i < m_items.length; i++)       if (toSubtract.m_items[i] == -1)	result.m_items[i] = m_items[i];      else	result.m_items[i] = -1;    result.m_counter = 0;    return result;  }  /**   * Generates rules with more than one item in the consequence.   *   * @param rules all the rules having (k-1)-item sets as consequences   * @param numItemsInSet the size of the item set for which the rules   * are to be generated   * @param numItemsInConsequence the value of (k-1)   * @param minConfidence the minimum confidence a rule has to have   * @param hashtables the hashtables containing all(!) previously generated   * item sets   * @return all the rules having (k)-item sets as consequences   */  private final FastVector[] moreComplexRules(FastVector[] rules, 					      int numItemsInSet, 					      int numItemsInConsequence,					      double minConfidence, 					      FastVector hashtables) {    AprioriItemSet newPremise;    FastVector[] result, moreResults;    FastVector newConsequences, newPremises = new FastVector(),       newConf = new FastVector();    Hashtable hashtable;    if (numItemsInSet > numItemsInConsequence + 1) {      hashtable =	(Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2);      newConsequences = mergeAllItemSets(rules[1], 					 numItemsInConsequence - 1,					 m_totalTransactions);      Enumeration enu = newConsequences.elements();      while (enu.hasMoreElements()) {	AprioriItemSet current = (AprioriItemSet)enu.nextElement();	current.m_counter = m_counter;	newPremise = subtract(current);	newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue();	newPremises.addElement(newPremise);	newConf.addElement(new Double(confidenceForRule(newPremise, current)));      }      result = new FastVector[3];      result[0] = newPremises;      result[1] = newConsequences;      result[2] = newConf;      pruneRules(result, minConfidence);      moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1,				     minConfidence, hashtables);      if (moreResults != null) 	for (int i = 0; i < moreResults[0].size(); i++) {	  result[0].addElement(moreResults[0].elementAt(i));	  result[1].addElement(moreResults[1].elementAt(i));	  result[2].addElement(moreResults[2].elementAt(i));	}      return result;    } else      return null;  }       /**   * Returns the contents of an item set as a string.   *   * @param instances contains the relevant header information   * @return string describing the item set   */  public final String toString(Instances instances) {         return super.toString(instances);  }    /**   * Converts the header info of the given set of instances into a set    * of item sets (singletons). The ordering of values in the header file    * determines the lexicographic order.   *   * @param instances the set of instances whose header info is to be used   * @return a set of item sets, each containing a single item   * @exception Exception if singletons can't be generated successfully   */  public static FastVector singletons(Instances instances) throws Exception {    FastVector setOfItemSets = new FastVector();    ItemSet current;    for (int i = 0; i < instances.numAttributes(); i++) {      if (instances.attribute(i).isNumeric())	throw new Exception("Can't handle numeric attributes!");      for (int j = 0; j < instances.attribute(i).numValues(); j++) {	current = new AprioriItemSet(instances.numInstances());	current.m_items = new int[instances.numAttributes()];	for (int k = 0; k < instances.numAttributes(); k++)	  current.m_items[k] = -1;	current.m_items[i] = j;	setOfItemSets.addElement(current);      }    }    return setOfItemSets;  }    /**   * Merges all item sets in the set of (k-1)-item sets    * to create the (k)-item sets and updates the counters.   *   * @param itemSets the set of (k-1)-item sets   * @param size the value of (k-1)   * @param totalTrans the total number of transactions in the data   * @return the generated (k)-item sets   */  public static FastVector mergeAllItemSets(FastVector itemSets, int size, 					    int totalTrans) {    FastVector newVector = new FastVector();    ItemSet result;    int numFound, k;    for (int i = 0; i < itemSets.size(); i++) {      ItemSet first = (ItemSet)itemSets.elementAt(i);    out:      for (int j = i+1; j < itemSets.size(); j++) {	ItemSet second = (ItemSet)itemSets.elementAt(j);	result = new AprioriItemSet(totalTrans);	result.m_items = new int[first.m_items.length];	// Find and copy common prefix of size 'size'	numFound = 0;	k = 0;	while (numFound < size) {	  if (first.m_items[k] == second.m_items[k]) {	    if (first.m_items[k] != -1) 	      numFound++;	    result.m_items[k] = first.m_items[k];	  } else 	    break out;	  k++;	}		// Check difference	while (k < first.m_items.length) {	  if ((first.m_items[k] != -1) && (second.m_items[k] != -1))	    break;	  else {	    if (first.m_items[k] != -1)	      result.m_items[k] = first.m_items[k];	    else	      result.m_items[k] = second.m_items[k];	  }	  k++;	}	if (k == first.m_items.length) {	  result.m_counter = 0;	  newVector.addElement(result);	}      }    }    return newVector;  } }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -