📄 apriori.java
字号:
if (m_outputItemSets) { options[current++] = "-I"; } if (getRemoveAllMissingCols()) { options[current++] = "-R"; } options[current++] = "-N"; options[current++] = "" + m_numRules; options[current++] = "-T"; options[current++] = "" + m_metricType; options[current++] = "-C"; options[current++] = "" + m_minMetric; options[current++] = "-D"; options[current++] = "" + m_delta; options[current++] = "-U"; options[current++] = "" + m_upperBoundMinSupport; options[current++] = "-M"; options[current++] = "" + m_lowerBoundMinSupport; options[current++] = "-S"; options[current++] = "" + m_significanceLevel; if (m_car) options[current++] = "-A"; if (m_verbose) options[current++] = "-V"; options[current++] = "-c"; options[current++] = "" + m_classIndex; while (current < options.length) { options[current++] = ""; } return options; } /** * Outputs the size of all the generated sets of itemsets and the rules. * * @return a string representation of the model */ public String toString() { StringBuffer text = new StringBuffer(); if (m_Ls.size() <= 1) return "\nNo large itemsets and rules found!\n"; text.append("\nApriori\n=======\n\n"); text.append("Minimum support: " + Utils.doubleToString(m_minSupport,2) + " (" + ((int)(m_minSupport * (double)m_instances.numInstances()+0.5)) + " instances)" + '\n'); text.append("Minimum metric <"); switch(m_metricType) { case CONFIDENCE: text.append("confidence>: "); break; case LIFT: text.append("lift>: "); break; case LEVERAGE: text.append("leverage>: "); break; case CONVICTION: text.append("conviction>: "); break; } text.append(Utils.doubleToString(m_minMetric,2)+'\n'); if (m_significanceLevel != -1) text.append("Significance level: "+ Utils.doubleToString(m_significanceLevel,2)+'\n'); text.append("Number of cycles performed: " + m_cycles+'\n'); text.append("\nGenerated sets of large itemsets:\n"); if(!m_car){ for (int i = 0; i < m_Ls.size(); i++) { text.append("\nSize of set of large itemsets L("+(i+1)+"): "+ ((FastVector)m_Ls.elementAt(i)).size()+'\n'); if (m_outputItemSets) { text.append("\nLarge Itemsets L("+(i+1)+"):\n"); for (int j = 0; j < ((FastVector)m_Ls.elementAt(i)).size(); j++) text.append(((AprioriItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)). toString(m_instances)+"\n"); } } text.append("\nBest rules found:\n\n"); for (int i = 0; i < m_allTheRules[0].size(); i++) { text.append(Utils.doubleToString((double)i+1, (int)(Math.log(m_numRules)/Math.log(10)+1),0)+ ". " + ((AprioriItemSet)m_allTheRules[0].elementAt(i)). toString(m_instances) + " ==> " + ((AprioriItemSet)m_allTheRules[1].elementAt(i)). toString(m_instances) +" conf:("+ Utils.doubleToString(((Double)m_allTheRules[2]. elementAt(i)).doubleValue(),2)+")"); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { text.append((m_metricType == LIFT ? " <" : "")+" lift:("+ Utils.doubleToString(((Double)m_allTheRules[3]. elementAt(i)).doubleValue(),2) +")"+(m_metricType == LIFT ? ">" : "")); text.append((m_metricType == LEVERAGE ? " <" : "")+" lev:("+ Utils.doubleToString(((Double)m_allTheRules[4]. elementAt(i)).doubleValue(),2) +")"); text.append(" ["+ (int)(((Double)m_allTheRules[4].elementAt(i)) .doubleValue() * (double)m_instances.numInstances()) +"]"+(m_metricType == LEVERAGE ? ">" : "")); text.append((m_metricType == CONVICTION ? " <" : "")+" conv:("+ Utils.doubleToString(((Double)m_allTheRules[5]. elementAt(i)).doubleValue(),2) +")"+(m_metricType == CONVICTION ? ">" : "")); } text.append('\n'); } } else{ for (int i = 0; i < m_Ls.size(); i++) { text.append("\nSize of set of large itemsets L("+(i+1)+"): "+ ((FastVector)m_Ls.elementAt(i)).size()+'\n'); if (m_outputItemSets) { text.append("\nLarge Itemsets L("+(i+1)+"):\n"); for (int j = 0; j < ((FastVector)m_Ls.elementAt(i)).size(); j++){ text.append(((ItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)). toString(m_instances)+"\n"); text.append(((LabeledItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)).m_classLabel+" "); text.append(((LabeledItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)).support()+"\n"); } } } text.append("\nBest rules found:\n\n"); for (int i = 0; i < m_allTheRules[0].size(); i++) { text.append(Utils.doubleToString((double)i+1, (int)(Math.log(m_numRules)/Math.log(10)+1),0)+ ". " + ((ItemSet)m_allTheRules[0].elementAt(i)). toString(m_instances) + " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)). toString(m_onlyClass) +" conf:("+ Utils.doubleToString(((Double)m_allTheRules[2]. elementAt(i)).doubleValue(),2)+")"); text.append('\n'); } } return text.toString(); } /** * Returns the metric string for the chosen metric type * @return a string describing the used metric for the interestingness of a class association rule */ public String metricString() { switch(m_metricType) { case LIFT: return "lif"; case LEVERAGE: return "leverage"; case CONVICTION: return "conviction"; default: return "conf"; } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String removeAllMissingColsTipText() { return "Remove columns with all missing values."; } /** * Remove columns containing all missing values. * @param r true if cols are to be removed. */ public void setRemoveAllMissingCols(boolean r) { m_removeMissingCols = r; } /** * Returns whether columns containing all missing values are to be removed * @return true if columns are to be removed. */ public boolean getRemoveAllMissingCols() { return m_removeMissingCols; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String upperBoundMinSupportTipText() { return "Upper bound for minimum support. Start iteratively decreasing " +"minimum support from this value."; } /** * Get the value of upperBoundMinSupport. * * @return Value of upperBoundMinSupport. */ public double getUpperBoundMinSupport() { return m_upperBoundMinSupport; } /** * Set the value of upperBoundMinSupport. * * @param v Value to assign to upperBoundMinSupport. */ public void setUpperBoundMinSupport(double v) { m_upperBoundMinSupport = v; } /** * Sets the class index * @param index the class index */ public void setClassIndex(int index){ m_classIndex = index; } /** * Gets the class index * @return the index of the class attribute */ public int getClassIndex(){ return m_classIndex; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classIndexTipText() { return "Index of the class attribute. If set to -1, the last attribute is taken as class attribute."; } /** * Sets class association rule mining * @param flag if class association rules are mined, false otherwise */ public void setCar(boolean flag){ m_car = flag; } /** * Gets whether class association ruels are mined * @return true if class association rules are mined, false otherwise */ public boolean getCar(){ return m_car; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String carTipText() { return "If enabled class association rules are mined instead of (general) association rules."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String lowerBoundMinSupportTipText() { return "Lower bound for minimum support."; } /** * Get the value of lowerBoundMinSupport. * * @return Value of lowerBoundMinSupport. */ public double getLowerBoundMinSupport() { return m_lowerBoundMinSupport; } /** * Set the value of lowerBoundMinSupport. * * @param v Value to assign to lowerBoundMinSupport. */ public void setLowerBoundMinSupport(double v) { m_lowerBoundMinSupport = v; } /** * Get the metric type * * @return the type of metric to use for ranking rules */ public SelectedTag getMetricType() { return new SelectedTag(m_metricType, TAGS_SELECTION); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String metricTypeTipText() { return "Set the type of metric by which to rank rules. Confidence is " +"the proportion of the examples covered by the premise that are also " +"covered by the consequence(Class association rules can only be mined using confidence). Lift is confidence divided by the " +"proportion of all examples that are covered by the consequence. This " +"is a measure of the importance of the association that is independent " +"of support. Leverage is the proportion of additional examples covered " +"by both the premise and consequence above those expected if the " +"premise and consequence were independent of each other. The total " +"number of examples that this represents is presented in brackets " +"following the leverage. Conviction is " +"another measure of departure from independence. Conviction is given " +"by "; } /** * Set the metric type for ranking rules * * @param d the type of metric */ public void setMetricType (SelectedTag d) { if (d.getTags() == TAGS_SELECTION) { m_metricType = d.getSelectedTag().getID(); } if (m_significanceLevel != -1 && m_metricType != CONFIDENCE) { m_metricType = CONFIDENCE; } if (m_metricType == CONFIDENCE) { setMinMetric(0.9); } if (m_metricType == LIFT || m_metricType == CONVICTION) { setMinMetric(1.1); } if (m_metricType == LEVERAGE) { setMinMetric(0.1); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minMetricTipText() { return "Minimum metric score. Consider only rules with scores higher than " +"this value."; } /** * Get the value of minConfidence. * * @return Value of minConfidence. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -