📄 classifiersplitevaluator.java
字号:
if (m_Template instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_Template). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); for (int j=0;j<m_AdditionalMeasures.length;j++) { if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { m_doesProduce[j] = true; } } } } } else { m_doesProduce = null; } } /** * Returns an enumeration of any additional measure names that might be * in the classifier * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_Template instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_Template). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (m_Template instanceof AdditionalMeasureProducer) { if (m_Classifier == null) { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return result for measure, " + "classifier has not been built yet."); } return ((AdditionalMeasureProducer)m_Classifier). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("ClassifierSplitEvaluator: " +"Can't return value for : "+additionalMeasureName +". "+m_Template.getClass().getName()+" " +"is not an AdditionalMeasureProducer"); } } /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant * for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ public Object [] getKeyTypes() { Object [] keyTypes = new Object[KEY_SIZE]; keyTypes[0] = ""; keyTypes[1] = ""; keyTypes[2] = ""; return keyTypes; } /** * Gets the names of each of the key columns produced for a single run. * The number of key fields must be constant * for a given SplitEvaluator. * * @return an array containing the name of each key column */ public String [] getKeyNames() { String [] keyNames = new String[KEY_SIZE]; keyNames[0] = "Scheme"; keyNames[1] = "Scheme_options"; keyNames[2] = "Scheme_version_ID"; return keyNames; } /** * Gets the key describing the current SplitEvaluator. For example * This may contain the name of the classifier used for classifier * predictive evaluation. The number of key fields must be constant * for a given SplitEvaluator. * * @return an array of objects containing the key. */ public Object [] getKey(){ Object [] key = new Object[KEY_SIZE]; key[0] = m_Template.getClass().getName(); key[1] = m_ClassifierOptions; key[2] = m_ClassifierVersion; return key; } /** * Gets the data types of each of the result columns produced for a * single run. The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing objects of the type of each result column. * The objects should be Strings, or Doubles. */ public Object [] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE+addm; overall_length += NUM_IR_STATISTICS; if (getAttributeID() >= 0) overall_length += 1; if (getPredTargetColumn()) overall_length += 2; Object [] resultTypes = new Object[overall_length]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // ID/Targets/Predictions if (getAttributeID() >= 0) resultTypes[current++] = ""; if (getPredTargetColumn()){ resultTypes[current++] = ""; resultTypes[current++] = ""; } // Classifier defined extras resultTypes[current++] = ""; // add any additional measures for (int i=0;i<addm;i++) { resultTypes[current++] = doub; } if (current != overall_length) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. * The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing the name of each result column */ public String [] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE+addm; overall_length += NUM_IR_STATISTICS; if (getAttributeID() >= 0) overall_length += 1; if (getPredTargetColumn()) overall_length += 2; String [] resultNames = new String[overall_length]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Basic performance stats - right vs wrong resultNames[current++] = "Number_correct"; resultNames[current++] = "Number_incorrect"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_correct"; resultNames[current++] = "Percent_incorrect"; resultNames[current++] = "Percent_unclassified"; resultNames[current++] = "Kappa_statistic"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // K&B stats resultNames[current++] = "KB_information"; resultNames[current++] = "KB_mean_information"; resultNames[current++] = "KB_relative_information"; // IR stats resultNames[current++] = "True_positive_rate"; resultNames[current++] = "Num_true_positives"; resultNames[current++] = "False_positive_rate"; resultNames[current++] = "Num_false_positives"; resultNames[current++] = "True_negative_rate"; resultNames[current++] = "Num_true_negatives"; resultNames[current++] = "False_negative_rate"; resultNames[current++] = "Num_false_negatives"; resultNames[current++] = "IR_precision"; resultNames[current++] = "IR_recall"; resultNames[current++] = "F_measure"; resultNames[current++] = "Area_under_ROC"; // Timing stats resultNames[current++] = "Elapsed_Time_training"; resultNames[current++] = "Elapsed_Time_testing"; resultNames[current++] = "UserCPU_Time_training"; resultNames[current++] = "UserCPU_Time_testing"; // ID/Targets/Predictions if (getAttributeID() >= 0) resultNames[current++] = "Instance_ID"; if (getPredTargetColumn()){ resultNames[current++] = "Targets"; resultNames[current++] = "Predictions"; } // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i=0;i<addm;i++) { resultNames[current++] = m_AdditionalMeasures[i]; } if (current != overall_length) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. Now performs * a deep copy of the classifier before it is built and evaluated (just in case * the classifier is not initialized properly in buildClassifier()). * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in * the array may be Strings, Doubles, or null (for the missing value). * @throws Exception if a problem occurs while getting the results */ public Object [] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute is not nominal!"); } if (m_Template == null) { throw new Exception("No classifier has been specified"); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE+addm; overall_length += NUM_IR_STATISTICS; if (getAttributeID() >= 0) overall_length += 1; if (getPredTargetColumn()) overall_length += 2; ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); if(!thMonitor.isThreadCpuTimeEnabled()) thMonitor.setThreadCpuTimeEnabled(true); Object [] result = new Object[overall_length]; Evaluation eval = new Evaluation(train); m_Classifier = Classifier.makeCopy(m_Template); double [] predictions; long thID = Thread.currentThread().getId(); long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; //training classifier trainTimeStart = System.currentTimeMillis(); if(canMeasureCPUTime) CPUStartTime = thMonitor.getThreadUserTime(thID); m_Classifier.buildClassifier(train); if(canMeasureCPUTime) trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; //testing classifier
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -