⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classifiersplitevaluator.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ClassifierSplitEvaluator.java *    Copyright (C) 1999 Len Trigg * */package weka.experiment;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.rules.ZeroR;import weka.core.AdditionalMeasureProducer;import weka.core.Attribute;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Summarizable;import weka.core.Utils;import java.io.ObjectStreamClass;import java.io.Serializable;import java.lang.management.ManagementFactory;import java.lang.management.ThreadMXBean;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * A SplitEvaluator that produces results for a classification scheme on a nominal class attribute. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -W &lt;class name&gt; *  The full class name of the classifier. *  eg: weka.classifiers.bayes.NaiveBayes</pre> *  * <pre> -C &lt;index&gt; *  The index of the class for which IR statistics *  are to be output. (default 1)</pre> *  * <pre> -I &lt;index&gt; *  The index of an attribute to output in the *  results. This attribute should identify an *  instance in order to know which instances are *  in the test set of a cross validation. if 0 *  no output (default 0).</pre> *  * <pre> -P *  Add target and prediction columns to the result *  for each fold.</pre> *  * <pre>  * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * All options after -- will be passed to the classifier. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.26 $ */public class ClassifierSplitEvaluator   implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer {    /** for serialization */  static final long serialVersionUID = -8511241602760467265L;    /** The template classifier */  protected Classifier m_Template = new ZeroR();  /** The classifier used for evaluation */  protected Classifier m_Classifier;  /** The names of any additional measures to look for in SplitEvaluators */  protected String [] m_AdditionalMeasures = null;  /** Array of booleans corresponding to the measures in m_AdditionalMeasures      indicating which of the AdditionalMeasures the current classifier      can produce */  protected boolean [] m_doesProduce = null;  /** The number of additional measures that need to be filled in      after taking into account column constraints imposed by the final      destination for results */  protected int m_numberAdditionalMeasures = 0;  /** Holds the statistics for the most recent application of the classifier */  protected String m_result = null;  /** The classifier options (if any) */  protected String m_ClassifierOptions = "";  /** The classifier version */  protected String m_ClassifierVersion = "";  /** The length of a key */  private static final int KEY_SIZE = 3;  /** The length of a result */  private static final int RESULT_SIZE = 25;  /** The number of IR statistics */  private static final int NUM_IR_STATISTICS = 14; //12;    /** Class index for information retrieval statistics (default 0) */  private int m_IRclass = 0;    /** Flag for prediction and target columns output.*/  private boolean m_predTargetColumn = false;  /** Attribute index of instance identifier (default -1) */  private int m_attID = -1;  /**   * No args constructor.   */  public ClassifierSplitEvaluator() {    updateOptions();  }  /**   * Returns a string describing this split evaluator   * @return a description of the split evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return " A SplitEvaluator that produces results for a classification "      +"scheme on a nominal class attribute.";  }  /**   * Returns an enumeration describing the available options..   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(4);    newVector.addElement(new Option(	     "\tThe full class name of the classifier.\n"	      +"\teg: weka.classifiers.bayes.NaiveBayes", 	     "W", 1, 	     "-W <class name>"));    newVector.addElement(new Option(	     "\tThe index of the class for which IR statistics\n" +	     "\tare to be output. (default 1)",	     "C", 1, 	     "-C <index>"));    newVector.addElement(new Option(	     "\tThe index of an attribute to output in the\n" +	     "\tresults. This attribute should identify an\n" +             "\tinstance in order to know which instances are\n" +             "\tin the test set of a cross validation. if 0\n" +             "\tno output (default 0).",	     "I", 1, 	     "-I <index>"));    newVector.addElement(new Option(	     "\tAdd target and prediction columns to the result\n" +             "\tfor each fold.",	     "P", 0, 	     "-P"));    if ((m_Template != null) &&	(m_Template instanceof OptionHandler)) {      newVector.addElement(new Option(	     "",	     "", 0, "\nOptions specific to classifier "	     + m_Template.getClass().getName() + ":"));      Enumeration enu = ((OptionHandler)m_Template).listOptions();      while (enu.hasMoreElements()) {	newVector.addElement(enu.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -W &lt;class name&gt;   *  The full class name of the classifier.   *  eg: weka.classifiers.bayes.NaiveBayes</pre>   *    * <pre> -C &lt;index&gt;   *  The index of the class for which IR statistics   *  are to be output. (default 1)</pre>   *    * <pre> -I &lt;index&gt;   *  The index of an attribute to output in the   *  results. This attribute should identify an   *  instance in order to know which instances are   *  in the test set of a cross validation. if 0   *  no output (default 0).</pre>   *    * <pre> -P   *  Add target and prediction columns to the result   *  for each fold.</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.rules.ZeroR:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * All options after -- will be passed to the classifier.   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String cName = Utils.getOption('W', options);    if (cName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    // Do it first without options, so if an exception is thrown during    // the option setting, listOptions will contain options for the actual    // Classifier.    setClassifier(Classifier.forName(cName, null));    if (getClassifier() instanceof OptionHandler) {      ((OptionHandler) getClassifier())	.setOptions(Utils.partitionOptions(options));      updateOptions();    }    String indexName = Utils.getOption('C', options);    if (indexName.length() != 0) {      m_IRclass = (new Integer(indexName)).intValue() - 1;    } else {      m_IRclass = 0;    }    String attID = Utils.getOption('I', options);    if (attID.length() != 0) {      m_attID = (new Integer(attID)).intValue() - 1;    } else {      m_attID = -1;    }        m_predTargetColumn = Utils.getFlag('P', options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Template != null) && 	(m_Template instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Template).getOptions();    }        String [] options = new String [classifierOptions.length + 8];    int current = 0;    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "-I";     options[current++] = "" + (m_attID + 1);    if (getPredTargetColumn()) options[current++] = "-P";        options[current++] = "-C";     options[current++] = "" + (m_IRclass + 1);    options[current++] = "--";        System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Set a list of method names for additional measures to look for   * in Classifiers. This could contain many measures (of which only a   * subset may be produceable by the current Classifier) if an experiment   * is the type that iterates over a set of properties.   * @param additionalMeasures a list of method names   */  public void setAdditionalMeasures(String [] additionalMeasures) {    // System.err.println("ClassifierSplitEvaluator: setting additional measures");    m_AdditionalMeasures = additionalMeasures;        // determine which (if any) of the additional measures this classifier    // can produce    if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) {      m_doesProduce = new boolean [m_AdditionalMeasures.length];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -