📄 pairedttester.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * PairedTTester.java * Copyright (C) 1999 Len Trigg * */package weka.experiment;import weka.core.Attribute;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Range;import weka.core.Utils;import java.io.BufferedReader;import java.io.FileReader;import java.text.SimpleDateFormat;import java.util.Date;import java.util.Enumeration;import java.util.Vector;/** * Calculates T-Test statistics on data stored in a set of instances. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D <index,index2-index4,...> * Specify list of columns that specify a unique * dataset. * First and last are valid indexes. (default none)</pre> * * <pre> -R <index> * Set the index of the column containing the run number</pre> * * <pre> -F <index> * Set the index of the column containing the fold number</pre> * * <pre> -G <index1,index2-index4,...> * Specify list of columns that specify a unique * 'result generator' (eg: classifier name and options). * First and last are valid indexes. (default none)</pre> * * <pre> -S <significance level> * Set the significance level for comparisons (default 0.05)</pre> * * <pre> -V * Show standard deviations</pre> * * <pre> -L * Produce table comparisons in Latex table format</pre> * * <pre> -csv * Produce table comparisons in CSV table format</pre> * * <pre> -html * Produce table comparisons in HTML table format</pre> * * <pre> -significance * Produce table comparisons with only the significance values</pre> * * <pre> -gnuplot * Produce table comparisons output suitable for GNUPlot</pre> * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.33 $ */public class PairedTTester implements OptionHandler, Tester { /** for serialization */ static final long serialVersionUID = 8370014624008728610L; /** The set of instances we will analyse */ protected Instances m_Instances; /** The index of the column containing the run number */ protected int m_RunColumn = 0; /** The option setting for the run number column (-1 means last) */ protected int m_RunColumnSet = -1; /** The option setting for the fold number column (-1 means none) */ protected int m_FoldColumn = -1; /** The column to sort on (-1 means default sorting) */ protected int m_SortColumn = -1; /** The sorting of the datasets (according to the sort column) */ protected int[] m_SortOrder = null; /** The sorting of the columns (test base is always first) */ protected int[] m_ColOrder = null; /** The significance level for comparisons */ protected double m_SignificanceLevel = 0.05; /** * The range of columns that specify a unique "dataset" * (eg: scheme plus configuration) */ protected Range m_DatasetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int [] m_DatasetKeyColumns; /** The list of dataset specifiers */ protected DatasetSpecifiers m_DatasetSpecifiers = new DatasetSpecifiers(); /** * The range of columns that specify a unique result set * (eg: scheme plus configuration) */ protected Range m_ResultsetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int [] m_ResultsetKeyColumns; /** An array containing the indexes of the datasets to display */ protected int[] m_DisplayedResultsets = null; /** Stores a vector for each resultset holding all instances in each set */ protected FastVector m_Resultsets = new FastVector(); /** Indicates whether the instances have been partitioned */ protected boolean m_ResultsetsValid; /** Indicates whether standard deviations should be displayed */ protected boolean m_ShowStdDevs = false; /** the instance of the class to produce the output. */ protected ResultMatrix m_ResultMatrix = new ResultMatrixPlainText(); /** A list of unique "dataset" specifiers that have been observed */ protected class DatasetSpecifiers { /** the specifiers that have been observed */ FastVector m_Specifiers = new FastVector(); /** * Removes all specifiers. */ protected void removeAllSpecifiers() { m_Specifiers.removeAllElements(); } /** * Add an instance to the list of specifiers (if necessary) * * @param inst the instance to add */ protected void add(Instance inst) { for (int i = 0; i < m_Specifiers.size(); i++) { Instance specifier = (Instance)m_Specifiers.elementAt(i); boolean found = true; for (int j = 0; j < m_DatasetKeyColumns.length; j++) { if (inst.value(m_DatasetKeyColumns[j]) != specifier.value(m_DatasetKeyColumns[j])) { found = false; } } if (found) { return; } } m_Specifiers.addElement(inst); } /** * Get the template at the given position. * * @param i the index * @return the template */ protected Instance specifier(int i) { return (Instance)m_Specifiers.elementAt(i); } /** * Gets the number of specifiers. * * @return the current number of specifiers */ protected int numSpecifiers() { return m_Specifiers.size(); } } /** Utility class to store the instances pertaining to a dataset */ protected class Dataset { /** the template */ Instance m_Template; /** the dataset */ FastVector m_Dataset; /** * Constructor * * @param template the template */ public Dataset(Instance template) { m_Template = template; m_Dataset = new FastVector(); add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(Instance first) { for (int i = 0; i < m_DatasetKeyColumns.length; i++) { if (first.value(m_DatasetKeyColumns[i]) != m_Template.value(m_DatasetKeyColumns[i])) { return false; } } return true; } /** * Adds the given instance to the dataset * * @param inst the instance to add */ protected void add(Instance inst) { m_Dataset.addElement(inst); } /** * Returns a vector containing the instances in the dataset * * @return the current contents */ protected FastVector contents() { return m_Dataset; } /** * Sorts the instances in the dataset by the run number. * * @param runColumn a value of type 'int' */ public void sort(int runColumn) { double [] runNums = new double [m_Dataset.size()]; for (int j = 0; j < runNums.length; j++) { runNums[j] = ((Instance) m_Dataset.elementAt(j)).value(runColumn); } int [] index = Utils.stableSort(runNums); FastVector newDataset = new FastVector(runNums.length); for (int j = 0; j < index.length; j++) { newDataset.addElement(m_Dataset.elementAt(index[j])); } m_Dataset = newDataset; } } /** Utility class to store the instances in a resultset */ protected class Resultset { /** the template */ Instance m_Template; /** the dataset */ FastVector m_Datasets; /** * Constructir * * @param template the template */ public Resultset(Instance template) { m_Template = template; m_Datasets = new FastVector(); add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(Instance first) { for (int i = 0; i < m_ResultsetKeyColumns.length; i++) { if (first.value(m_ResultsetKeyColumns[i]) != m_Template.value(m_ResultsetKeyColumns[i])) { return false; } } return true; } /** * Returns a string descriptive of the resultset key column values * for this resultset * * @return a value of type 'String' */ protected String templateString() { String result = ""; String tempResult = ""; for (int i = 0; i < m_ResultsetKeyColumns.length; i++) { tempResult = m_Template.toString(m_ResultsetKeyColumns[i]) + ' '; // compact the string tempResult = Utils.removeSubstring(tempResult, "weka.classifiers."); tempResult = Utils.removeSubstring(tempResult, "weka.filters."); tempResult = Utils.removeSubstring(tempResult, "weka.attributeSelection."); result += tempResult; } return result.trim(); } /** * Returns a vector containing all instances belonging to one dataset. * * @param inst a template instance * @return a value of type 'FastVector' */ public FastVector dataset(Instance inst) { for (int i = 0; i < m_Datasets.size(); i++) { if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(inst)) { return ((Dataset)m_Datasets.elementAt(i)).contents(); } } return null; } /** * Adds an instance to this resultset * * @param newInst a value of type 'Instance' */ public void add(Instance newInst) { for (int i = 0; i < m_Datasets.size(); i++) { if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(newInst)) { ((Dataset)m_Datasets.elementAt(i)).add(newInst); return; } } Dataset newDataset = new Dataset(newInst); m_Datasets.addElement(newDataset); } /** * Sorts the instances in each dataset by the run number. * * @param runColumn a value of type 'int' */ public void sort(int runColumn) { for (int i = 0; i < m_Datasets.size(); i++) { ((Dataset)m_Datasets.elementAt(i)).sort(runColumn); } } } // Resultset /** * Returns a string descriptive of the key column values for * the "datasets * * @param template the template * @return a value of type 'String' */ protected String templateString(Instance template) { String result = ""; for (int i = 0; i < m_DatasetKeyColumns.length; i++) { result += template.toString(m_DatasetKeyColumns[i]) + ' '; } if (result.startsWith("weka.classifiers.")) { result = result.substring("weka.classifiers.".length()); } return result.trim(); } /** * Sets the matrix to use to produce the output. * @param matrix the instance to use to produce the output * @see ResultMatrix */ public void setResultMatrix(ResultMatrix matrix) { m_ResultMatrix = matrix; } /** * Gets the instance that produces the output. * @return the instance to produce the output */ public ResultMatrix getResultMatrix() { return m_ResultMatrix; } /** * Set whether standard deviations are displayed or not. * @param s true if standard deviations are to be displayed */ public void setShowStdDevs(boolean s) { m_ShowStdDevs = s; } /** * Returns true if standard deviations have been requested. * @return true if standard deviations are to be displayed. */ public boolean getShowStdDevs() { return m_ShowStdDevs; } /** * Separates the instances into resultsets and by dataset/run. * * @throws Exception if the TTest parameters have not been set. */ protected void prepareData() throws Exception { if (m_Instances == null) { throw new Exception("No instances have been set"); } if (m_RunColumnSet == -1) { m_RunColumn = m_Instances.numAttributes() - 1; } else { m_RunColumn = m_RunColumnSet; } if (m_ResultsetKeyColumnsRange == null) { throw new Exception("No result specifier columns have been set"); } m_ResultsetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1); m_ResultsetKeyColumns = m_ResultsetKeyColumnsRange.getSelection(); if (m_DatasetKeyColumnsRange == null) { throw new Exception("No dataset specifier columns have been set"); } m_DatasetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1); m_DatasetKeyColumns = m_DatasetKeyColumnsRange.getSelection(); // Split the data up into result sets m_Resultsets.removeAllElements(); m_DatasetSpecifiers.removeAllSpecifiers(); for (int i = 0; i < m_Instances.numInstances(); i++) { Instance current = m_Instances.instance(i); if (current.isMissing(m_RunColumn)) { throw new Exception("Instance has missing value in run " + "column!\n" + current); } for (int j = 0; j < m_ResultsetKeyColumns.length; j++) { if (current.isMissing(m_ResultsetKeyColumns[j])) { throw new Exception("Instance has missing value in resultset key "
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -