📄 remoteexperiment.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * RemoteExperiment.java * Copyright (C) 2000 Mark Hall * */package weka.experiment;import weka.core.FastVector;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Queue;import weka.core.SerializedObject;import weka.core.Utils;import weka.core.xml.KOML;import weka.core.xml.XMLOptions;import weka.experiment.xml.XMLExperiment;import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.ObjectInputStream;import java.io.ObjectOutputStream;import java.rmi.Naming;import java.util.Enumeration;import javax.swing.DefaultListModel;/** * Holds all the necessary configuration information for a distributed * experiment. This object is able to be serialized for storage on disk.<p> * * This class is experimental at present. Has been tested using * CSVResultListener (sending results to standard out) and * DatabaseResultListener (InstantDB + RmiJdbc bridge). <p> * * Getting started:<p> * * Start InstantDB (with the RMI bridge) on some machine. If using java2 * then specify -Djava.security.policy=db.policy to the * virtual machine. Where db.policy is as follows: <br> * <pre> * grant { * permission java.security.AllPermission; * }; * </pre><p> * * Start RemoteEngine servers on x machines as per the instructons in the * README_Experiment_Gui file. There must be a * DatabaseUtils.props in either the HOME or current directory of each * machine, listing all necessary jdbc drivers.<p> * * The machine where a RemoteExperiment is started must also have a copy * of DatabaseUtils.props listing the URL to the machine where the * database server is running (RmiJdbc + InstantDB). <p> * * Here is an example of starting a RemoteExperiment: <p> * * <pre> * * java -Djava.rmi.server.codebase=file:/path to weka classes/ \ * weka.experiment.RemoteExperiment -L 1 -U 10 \ * -T /home/ml/datasets/UCI/iris.arff \ * -D "weka.experiment.DatabaseResultListener" \ * -P "weka.experiment.RandomSplitResultProducer" \ * -h rosebud.cs.waikato.ac.nz -h blackbird.cs.waikato.ac.nz -r -- \ * -W weka.experiment.ClassifierSplitEvaluator -- \ * -W weka.classifiers.bayes.NaiveBayes * * </pre> <p> * The "codebase" property tells rmi where to serve up weka classes from. * This can either be a file url (as long as a shared file system is being * used that is accessable by the remoteEngine servers), or http url (which * of course supposes that a web server is running and you have put your * weka classes somewhere that is web accessable). If using a file url the * trailing "/" is *most* important unless the weka classes are in a jar * file. <p> * <!-- options-start --> * Valid options are: <p/> * * <pre> -L <num> * The lower run number to start the experiment from. * (default 1)</pre> * * <pre> -U <num> * The upper run number to end the experiment at (inclusive). * (default 10)</pre> * * <pre> -T <arff file> * The dataset to run the experiment on. * (required, may be specified multiple times)</pre> * * <pre> -P <class name> * The full class name of a ResultProducer (required). * eg: weka.experiment.RandomSplitResultProducer</pre> * * <pre> -D <class name> * The full class name of a ResultListener (required). * eg: weka.experiment.CSVResultListener</pre> * * <pre> -N <string> * A string containing any notes about the experiment. * (default none)</pre> * * <pre> * Options specific to result producer weka.experiment.RandomSplitResultProducer: * </pre> * * <pre> -P <percent> * The percentage of instances to use for training. * (default 66)</pre> * * <pre> -D * Save raw split evaluator output.</pre> * * <pre> -O <file/directory name/path> * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> * * <pre> -W <class name> * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator</pre> * * <pre> -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding.</pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> -W <class name> * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes</pre> * * <pre> -C <index> * The index of the class for which IR statistics * are to be output. (default 1)</pre> * * <pre> -I <index> * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0).</pre> * * <pre> -P * Add target and prediction columns to the result * for each fold.</pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.14 $ */public class RemoteExperiment extends Experiment { /** for serialization */ static final long serialVersionUID = -7357668825635314937L; /** The list of objects listening for remote experiment events */ private FastVector m_listeners = new FastVector(); /** Holds the names of machines with remoteEngine servers running */ protected DefaultListModel m_remoteHosts = new DefaultListModel(); /** The queue of available hosts */ private Queue m_remoteHostsQueue = new Queue(); /** The status of each of the remote hosts */ private int [] m_remoteHostsStatus; /** The number of times tasks have failed on each remote host */ private int [] m_remoteHostFailureCounts; /** status of the remote host: available */ protected static final int AVAILABLE=0; /** status of the remote host: in use */ protected static final int IN_USE=1; /** status of the remote host: connection failed */ protected static final int CONNECTION_FAILED=2; /** status of the remote host: some other failure */ protected static final int SOME_OTHER_FAILURE=3;// protected static final int TO_BE_RUN=0;// protected static final int PROCESSING=1;// protected static final int FAILED=2;// protected static final int FINISHED=3; /** allow at most 3 failures on a host before it is removed from the list of usable hosts */ protected static final int MAX_FAILURES=3; /** Set to true if MAX_FAILURES exceeded on all hosts or connections fail on all hosts or user aborts experiment (via gui) */ private boolean m_experimentAborted = false; /** The number of hosts removed due to exceeding max failures */ private int m_removedHosts; /** The count of failed sub-experiments */ private int m_failedCount; /** The count of successfully completed sub-experiments */ private int m_finishedCount; /** The base experiment to split up into sub experiments for remote execution */ private Experiment m_baseExperiment = null; /** The sub experiments */ protected Experiment [] m_subExperiments; /** The queue of sub experiments waiting to be processed */ private Queue m_subExpQueue = new Queue(); /** The status of each of the sub-experiments */ protected int [] m_subExpComplete; /** * If true, then sub experiments are created on the basis of data sets * rather than run number. */ protected boolean m_splitByDataSet = true; /** * Returns true if sub experiments are to be created on the basis of * data set.. * * @return a <code>boolean</code> value indicating whether sub * experiments are to be created on the basis of data set (true) or * run number (false). */ public boolean getSplitByDataSet() { return m_splitByDataSet; } /** * Set whether sub experiments are to be created on the basis of * data set. * * @param sd true if sub experiments are to be created on the basis * of data set. Otherwise sub experiments are created on the basis of * run number. */ public void setSplitByDataSet(boolean sd) { m_splitByDataSet = sd; } /** * Construct a new RemoteExperiment using an empty Experiment as base * Experiment * @throws Exception if the base experiment is null */ public RemoteExperiment() throws Exception { this(new Experiment()); } /** * Construct a new RemoteExperiment using a base Experiment * @param base the base experiment to use * @throws Exception if the base experiment is null */ public RemoteExperiment(Experiment base) throws Exception { setBaseExperiment(base); } /** * Add an object to the list of those interested in recieving update * information from the RemoteExperiment * @param r a listener */ public void addRemoteExperimentListener(RemoteExperimentListener r) { m_listeners.addElement(r); } /** * Get the base experiment used by this remote experiment * @return the base experiment */ public Experiment getBaseExperiment() { return m_baseExperiment; } /** * Set the base experiment. A sub experiment will be created for each * run in the base experiment. * @param base the base experiment to use. * @throws Exception if supplied base experiment is null */ public void setBaseExperiment(Experiment base) throws Exception { if (base == null) { throw new Exception("Base experiment is null!"); } m_baseExperiment = base; setRunLower(m_baseExperiment.getRunLower()); setRunUpper(m_baseExperiment.getRunUpper()); setResultListener(m_baseExperiment.getResultListener()); setResultProducer(m_baseExperiment.getResultProducer()); setDatasets(m_baseExperiment.getDatasets()); setUsePropertyIterator(m_baseExperiment.getUsePropertyIterator()); setPropertyPath(m_baseExperiment.getPropertyPath()); setPropertyArray(m_baseExperiment.getPropertyArray()); setNotes(m_baseExperiment.getNotes()); m_ClassFirst = m_baseExperiment.m_ClassFirst; m_AdvanceDataSetFirst = m_baseExperiment.m_AdvanceDataSetFirst; } /** * Set the user notes. * * @param newNotes New user notes. */ public void setNotes(String newNotes) { super.setNotes(newNotes); m_baseExperiment.setNotes(newNotes); } /** * Set the lower run number for the experiment. * * @param newRunLower the lower run number for the experiment. */ public void setRunLower(int newRunLower) { super.setRunLower(newRunLower); m_baseExperiment.setRunLower(newRunLower); } /** * Set the upper run number for the experiment. * * @param newRunUpper the upper run number for the experiment. */ public void setRunUpper(int newRunUpper) { super.setRunUpper(newRunUpper); m_baseExperiment.setRunUpper(newRunUpper); } /** * Sets the result listener where results will be sent. * * @param newResultListener the result listener where results will be sent. */ public void setResultListener(ResultListener newResultListener) { super.setResultListener(newResultListener); m_baseExperiment.setResultListener(newResultListener); } /** * Set the result producer used for the current experiment. * * @param newResultProducer result producer to use for the current * experiment. */ public void setResultProducer(ResultProducer newResultProducer) { super.setResultProducer(newResultProducer); m_baseExperiment.setResultProducer(newResultProducer); } /** * Set the datasets to use in the experiment * @param ds the list of datasets to use */ public void setDatasets(DefaultListModel ds) { super.setDatasets(ds); m_baseExperiment.setDatasets(ds); } /** * Sets whether the custom property iterator should be used. * * @param newUsePropertyIterator true if so */ public void setUsePropertyIterator(boolean newUsePropertyIterator) { super.setUsePropertyIterator(newUsePropertyIterator); m_baseExperiment.setUsePropertyIterator(newUsePropertyIterator); } /** * Sets the path of properties taken to get to the custom property * to iterate over. * * @param newPropertyPath an array of PropertyNodes */ public void setPropertyPath(PropertyNode [] newPropertyPath) { super.setPropertyPath(newPropertyPath); m_baseExperiment.setPropertyPath(newPropertyPath); } /** * Sets the array of values to set the custom property to. * * @param newPropArray a value of type Object which should be an * array of the appropriate values. */ public void setPropertyArray(Object newPropArray) { super.setPropertyArray(newPropArray); m_baseExperiment.setPropertyArray(newPropArray); } /** * Prepares a remote experiment for running, creates sub experiments * * @throws Exception if an error occurs */ public void initialize() throws Exception { if (m_baseExperiment == null) { throw new Exception("No base experiment specified!"); } m_experimentAborted = false; m_finishedCount = 0; m_failedCount = 0; m_RunNumber = getRunLower(); m_DatasetNumber = 0; m_PropertyNumber = 0; m_CurrentProperty = -1; m_CurrentInstances = null; m_Finished = false; if (m_remoteHosts.size() == 0) { throw new Exception("No hosts specified!"); } // initialize all remote hosts to available m_remoteHostsStatus = new int [m_remoteHosts.size()]; m_remoteHostFailureCounts = new int [m_remoteHosts.size()]; m_remoteHostsQueue = new Queue(); // prime the hosts queue for (int i=0;i<m_remoteHosts.size();i++) { m_remoteHostsQueue.push(new Integer(i)); } // set up sub experiments m_subExpQueue = new Queue(); int numExps; if (getSplitByDataSet()) { numExps = m_baseExperiment.getDatasets().size(); } else { numExps = getRunUpper() - getRunLower() + 1; } m_subExperiments = new Experiment[numExps]; m_subExpComplete = new int[numExps];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -