📄 learningrateresultproducer.java
字号:
/** * Gets a description of the internal settings of the result * producer, sufficient for distinguishing a ResultProducer * instance from another with different settings (ignoring * those settings set through this interface). For example, * a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should * be compatible. Typically if a ResultProducer is an OptionHandler, * this string will represent the command line arguments required * to set the ResultProducer to that state. * * @return the description of the ResultProducer state, or null * if no state is defined */ public String getCompatibilityState() { String result = " "; // + "-F " + Utils.quote(getKeyFieldName()) // + " -X " + getStepSize() + " "; if (m_ResultProducer == null) { result += "<null ResultProducer>"; } else { result += "-W " + m_ResultProducer.getClass().getName(); } result += " -- " + m_ResultProducer.getCompatibilityState(); return result.trim(); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option( "\tThe number of steps in the learning rate curve.\n" +"\t(default 10)", "X", 1, "-X <num steps>")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer.\n" +"\teg: weka.experiment.CrossValidationResultProducer", "W", 1, "-W <class name>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_ResultProducer).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -X <num steps> * The number of steps in the learning rate curve. * (default 10)</pre> * * <pre> -W <class name> * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer</pre> * * <pre> * Options specific to result producer weka.experiment.AveragingResultProducer: * </pre> * * <pre> -F <field name> * The name of the field to average over. * (default "Fold")</pre> * * <pre> -X <num results> * The number of results expected per average. * (default 10)</pre> * * <pre> -S * Calculate standard deviations. * (default only averages)</pre> * * <pre> -W <class name> * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer</pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> -X <number of folds> * The number of folds to use for the cross-validation. * (default 10)</pre> * * <pre> -D * Save raw split evaluator output.</pre> * * <pre> -O <file/directory name/path> * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> * * <pre> -W <class name> * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator</pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> -W <class name> * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes</pre> * * <pre> -C <index> * The index of the class for which IR statistics * are to be output. (default 1)</pre> * * <pre> -I <index> * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0).</pre> * * <pre> -P * Add target and prediction columns to the result * for each fold.</pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * All options after -- will be passed to the result producer. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String stepSize = Utils.getOption('S', options); if (stepSize.length() != 0) { setStepSize(Integer.parseInt(stepSize)); } else { setStepSize(10); } String lowerSize = Utils.getOption('L', options); if (lowerSize.length() != 0) { setLowerSize(Integer.parseInt(lowerSize)); } else { setLowerSize(0); } String upperSize = Utils.getOption('U', options); if (upperSize.length() != 0) { setUpperSize(Integer.parseInt(upperSize)); } else { setUpperSize(-1); } String rpName = Utils.getOption('W', options); if (rpName.length() == 0) { throw new Exception("A ResultProducer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // RP. setResultProducer((ResultProducer)Utils.forName( ResultProducer.class, rpName, null)); if (getResultProducer() instanceof OptionHandler) { ((OptionHandler) getResultProducer()) .setOptions(Utils.partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] seOptions = new String [0]; if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { seOptions = ((OptionHandler)m_ResultProducer).getOptions(); } String [] options = new String [seOptions.length + 9]; int current = 0; options[current++] = "-S"; options[current++] = "" + getStepSize(); options[current++] = "-L"; options[current++] = "" + getLowerSize(); options[current++] = "-U"; options[current++] = "" + getUpperSize(); if (getResultProducer() != null) { options[current++] = "-W"; options[current++] = getResultProducer().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for * in SplitEvaluators. This could contain many measures (of which only a * subset may be produceable by the current resultProducer) if an experiment * is the type that iterates over a set of properties. * @param additionalMeasures an array of measure names, null if none */ public void setAdditionalMeasures(String [] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_ResultProducer != null) { System.err.println("LearningRateResultProducer: setting additional " +"measures for " +"ResultProducer"); m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be * in the result producer * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_ResultProducer instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_ResultProducer). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (m_ResultProducer instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer)m_ResultProducer). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("LearningRateResultProducer: " +"Can't return value for : "+additionalMeasureName +". "+m_ResultProducer.getClass().getName()+" " +"is not an AdditionalMeasureProducer"); } } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ public void setInstances(Instances instances) { m_Instances = instances; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String lowerSizeTipText() { return "Set the minmum number of instances in a dataset. Setting zero " + "here will actually use <stepSize> number of instances at the first " + "step (since it makes no sense to use zero instances :-))"; } /** * Get the value of LowerSize. * * @return Value of LowerSize. */ public int getLowerSize() { return m_LowerSize; } /** * Set the value of LowerSize. * * @param newLowerSize Value to assign to * LowerSize. */ public void setLowerSize(int newLowerSize) { m_LowerSize = newLowerSize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String upperSizeTipText() { return "Set the maximum number of instances in a dataset. Setting -1 " + "sets no upper limit (other than the total number of instances " + "in the full dataset)"; } /** * Get the value of UpperSize. * * @return Value of UpperSize. */ public int getUpperSize() { return m_UpperSize; } /** * Set the value of UpperSize. * * @param newUpperSize Value to assign to * UpperSize. */ public void setUpperSize(int newUpperSize) { m_UpperSize = newUpperSize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String stepSizeTipText() { return "Set the number of instances to add at each step."; } /** * Get the value of StepSize. * * @return Value of StepSize. */ public int getStepSize() { return m_StepSize; } /** * Set the value of StepSize. * * @param newStepSize Value to assign to * StepSize. */ public void setStepSize(int newStepSize) { m_StepSize = newStepSize; } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String resultProducerTipText() { return "Set the resultProducer for which learning rate results should be " + "generated."; } /** * Get the ResultProducer. * * @return the ResultProducer. */ public ResultProducer getResultProducer() { return m_ResultProducer; } /** * Set the ResultProducer. * * @param newResultProducer new ResultProducer to use. */ public void setResultProducer(ResultProducer newResultProducer) { m_ResultProducer = newResultProducer; m_ResultProducer.setResultListener(this); } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ public String toString() { String result = "LearningRateResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; }} // LearningRateResultProducer
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -