⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 learningrateresultproducer.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
  /**   * Gets a description of the internal settings of the result   * producer, sufficient for distinguishing a ResultProducer   * instance from another with different settings (ignoring   * those settings set through this interface). For example,   * a cross-validation ResultProducer may have a setting for the   * number of folds. For a given state, the results produced should   * be compatible. Typically if a ResultProducer is an OptionHandler,   * this string will represent the command line arguments required   * to set the ResultProducer to that state.   *   * @return the description of the ResultProducer state, or null   * if no state is defined   */  public String getCompatibilityState() {    String result = " ";    // + "-F " + Utils.quote(getKeyFieldName())    // + " -X " + getStepSize() + " ";    if (m_ResultProducer == null) {      result += "<null ResultProducer>";    } else {      result += "-W " + m_ResultProducer.getClass().getName();    }    result  += " -- " + m_ResultProducer.getCompatibilityState();    return result.trim();  }  /**   * Returns an enumeration describing the available options..   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(2);    newVector.addElement(new Option(	     "\tThe number of steps in the learning rate curve.\n"	      +"\t(default 10)", 	     "X", 1, 	     "-X <num steps>"));    newVector.addElement(new Option(	     "\tThe full class name of a ResultProducer.\n"	      +"\teg: weka.experiment.CrossValidationResultProducer", 	     "W", 1, 	     "-W <class name>"));    if ((m_ResultProducer != null) &&	(m_ResultProducer instanceof OptionHandler)) {      newVector.addElement(new Option(	     "",	     "", 0, "\nOptions specific to result producer "	     + m_ResultProducer.getClass().getName() + ":"));      Enumeration enu = ((OptionHandler)m_ResultProducer).listOptions();      while (enu.hasMoreElements()) {	newVector.addElement(enu.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -X &lt;num steps&gt;   *  The number of steps in the learning rate curve.   *  (default 10)</pre>   *    * <pre> -W &lt;class name&gt;   *  The full class name of a ResultProducer.   *  eg: weka.experiment.CrossValidationResultProducer</pre>   *    * <pre>    * Options specific to result producer weka.experiment.AveragingResultProducer:   * </pre>   *    * <pre> -F &lt;field name&gt;   *  The name of the field to average over.   *  (default "Fold")</pre>   *    * <pre> -X &lt;num results&gt;   *  The number of results expected per average.   *  (default 10)</pre>   *    * <pre> -S   *  Calculate standard deviations.   *  (default only averages)</pre>   *    * <pre> -W &lt;class name&gt;   *  The full class name of a ResultProducer.   *  eg: weka.experiment.CrossValidationResultProducer</pre>   *    * <pre>    * Options specific to result producer weka.experiment.CrossValidationResultProducer:   * </pre>   *    * <pre> -X &lt;number of folds&gt;   *  The number of folds to use for the cross-validation.   *  (default 10)</pre>   *    * <pre> -D   * Save raw split evaluator output.</pre>   *    * <pre> -O &lt;file/directory name/path&gt;   *  The filename where raw output will be stored.   *  If a directory name is specified then then individual   *  outputs will be gzipped, otherwise all output will be   *  zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre>   *    * <pre> -W &lt;class name&gt;   *  The full class name of a SplitEvaluator.   *  eg: weka.experiment.ClassifierSplitEvaluator</pre>   *    * <pre>    * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:   * </pre>   *    * <pre> -W &lt;class name&gt;   *  The full class name of the classifier.   *  eg: weka.classifiers.bayes.NaiveBayes</pre>   *    * <pre> -C &lt;index&gt;   *  The index of the class for which IR statistics   *  are to be output. (default 1)</pre>   *    * <pre> -I &lt;index&gt;   *  The index of an attribute to output in the   *  results. This attribute should identify an   *  instance in order to know which instances are   *  in the test set of a cross validation. if 0   *  no output (default 0).</pre>   *    * <pre> -P   *  Add target and prediction columns to the result   *  for each fold.</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.rules.ZeroR:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * All options after -- will be passed to the result producer.   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String stepSize = Utils.getOption('S', options);    if (stepSize.length() != 0) {      setStepSize(Integer.parseInt(stepSize));    } else {      setStepSize(10);    }    String lowerSize = Utils.getOption('L', options);    if (lowerSize.length() != 0) {      setLowerSize(Integer.parseInt(lowerSize));    } else {      setLowerSize(0);    }        String upperSize = Utils.getOption('U', options);    if (upperSize.length() != 0) {      setUpperSize(Integer.parseInt(upperSize));    } else {      setUpperSize(-1);    }    String rpName = Utils.getOption('W', options);    if (rpName.length() == 0) {      throw new Exception("A ResultProducer must be specified with"			  + " the -W option.");    }    // Do it first without options, so if an exception is thrown during    // the option setting, listOptions will contain options for the actual    // RP.    setResultProducer((ResultProducer)Utils.forName(		      ResultProducer.class,		      rpName,		      null));    if (getResultProducer() instanceof OptionHandler) {      ((OptionHandler) getResultProducer())	.setOptions(Utils.partitionOptions(options));    }  }  /**   * Gets the current settings of the result producer.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] seOptions = new String [0];    if ((m_ResultProducer != null) && 	(m_ResultProducer instanceof OptionHandler)) {      seOptions = ((OptionHandler)m_ResultProducer).getOptions();    }        String [] options = new String [seOptions.length + 9];    int current = 0;    options[current++] = "-S";    options[current++] = "" + getStepSize();    options[current++] = "-L";    options[current++] = "" + getLowerSize();    options[current++] = "-U";    options[current++] = "" + getUpperSize();    if (getResultProducer() != null) {      options[current++] = "-W";      options[current++] = getResultProducer().getClass().getName();    }    options[current++] = "--";    System.arraycopy(seOptions, 0, options, current, 		     seOptions.length);    current += seOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Set a list of method names for additional measures to look for   * in SplitEvaluators. This could contain many measures (of which only a   * subset may be produceable by the current resultProducer) if an experiment   * is the type that iterates over a set of properties.   * @param additionalMeasures an array of measure names, null if none   */  public void setAdditionalMeasures(String [] additionalMeasures) {    m_AdditionalMeasures = additionalMeasures;    if (m_ResultProducer != null) {      System.err.println("LearningRateResultProducer: setting additional "			 +"measures for "			 +"ResultProducer");      m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures);    }  }  /**   * Returns an enumeration of any additional measure names that might be   * in the result producer   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector();    if (m_ResultProducer instanceof AdditionalMeasureProducer) {      Enumeration en = ((AdditionalMeasureProducer)m_ResultProducer).	enumerateMeasures();      while (en.hasMoreElements()) {	String mname = (String)en.nextElement();	newVector.addElement(mname);      }    }    return newVector.elements();  }  /**   * Returns the value of the named measure   * @param additionalMeasureName the name of the measure to query for its value   * @return the value of the named measure   * @throws IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (m_ResultProducer instanceof AdditionalMeasureProducer) {      return ((AdditionalMeasureProducer)m_ResultProducer).	getMeasure(additionalMeasureName);    } else {      throw new IllegalArgumentException("LearningRateResultProducer: "			  +"Can't return value for : "+additionalMeasureName			  +". "+m_ResultProducer.getClass().getName()+" "			  +"is not an AdditionalMeasureProducer");    }  }  /**   * Sets the dataset that results will be obtained for.   *   * @param instances a value of type 'Instances'.   */  public void setInstances(Instances instances) {        m_Instances = instances;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String lowerSizeTipText() {    return "Set the minmum number of instances in a dataset. Setting zero "      + "here will actually use <stepSize> number of instances at the first "      + "step (since it makes no sense to use zero instances :-))";  }  /**   * Get the value of LowerSize.   *   * @return Value of LowerSize.   */  public int getLowerSize() {        return m_LowerSize;  }    /**   * Set the value of LowerSize.   *   * @param newLowerSize Value to assign to   * LowerSize.   */  public void setLowerSize(int newLowerSize) {        m_LowerSize = newLowerSize;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String upperSizeTipText() {    return "Set the maximum number of instances in a dataset. Setting -1 "      + "sets no upper limit (other than the total number of instances "      + "in the full dataset)";  }  /**   * Get the value of UpperSize.   *   * @return Value of UpperSize.   */  public int getUpperSize() {        return m_UpperSize;  }    /**   * Set the value of UpperSize.   *   * @param newUpperSize Value to assign to   * UpperSize.   */  public void setUpperSize(int newUpperSize) {        m_UpperSize = newUpperSize;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String stepSizeTipText() {    return "Set the number of instances to add at each step.";  }  /**   * Get the value of StepSize.   *   * @return Value of StepSize.   */  public int getStepSize() {        return m_StepSize;  }    /**   * Set the value of StepSize.   *   * @param newStepSize Value to assign to   * StepSize.   */  public void setStepSize(int newStepSize) {        m_StepSize = newStepSize;  }  /**   * Sets the object to send results of each run to.   *   * @param listener a value of type 'ResultListener'   */  public void setResultListener(ResultListener listener) {    m_ResultListener = listener;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String resultProducerTipText() {    return "Set the resultProducer for which learning rate results should be "      + "generated.";  }  /**   * Get the ResultProducer.   *   * @return the ResultProducer.   */  public ResultProducer getResultProducer() {        return m_ResultProducer;  }    /**   * Set the ResultProducer.   *   * @param newResultProducer new ResultProducer to use.   */  public void setResultProducer(ResultProducer newResultProducer) {    m_ResultProducer = newResultProducer;    m_ResultProducer.setResultListener(this);  }  /**   * Gets a text descrption of the result producer.   *   * @return a text description of the result producer.   */  public String toString() {    String result = "LearningRateResultProducer: ";    result += getCompatibilityState();    if (m_Instances == null) {      result += ": <null Instances>";    } else {      result += ": " + Utils.backQuoteChars(m_Instances.relationName());    }    return result;  }} // LearningRateResultProducer

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -