⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 experiment.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Experiment.java *    Copyright (C) 1999 Len Trigg * */package weka.experiment;import weka.core.AdditionalMeasureProducer;import weka.core.FastVector;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import weka.core.xml.KOML;import weka.core.xml.XMLOptions;import weka.experiment.xml.XMLExperiment;import java.beans.PropertyDescriptor;import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.FileReader;import java.io.ObjectInputStream;import java.io.ObjectOutputStream;import java.io.Reader;import java.io.Serializable;import java.lang.reflect.Array;import java.lang.reflect.Method;import java.util.Enumeration;import java.util.Vector;import javax.swing.DefaultListModel;/** * Holds all the necessary configuration information for a standard * type experiment. This object is able to be serialized for storage * on disk. * <!-- options-start --> * Valid options are: <p/> *  * <pre> -L &lt;num&gt; *  The lower run number to start the experiment from. *  (default 1)</pre> *  * <pre> -U &lt;num&gt; *  The upper run number to end the experiment at (inclusive). *  (default 10)</pre> *  * <pre> -T &lt;arff file&gt; *  The dataset to run the experiment on. *  (required, may be specified multiple times)</pre> *  * <pre> -P &lt;class name&gt; *  The full class name of a ResultProducer (required). *  eg: weka.experiment.RandomSplitResultProducer</pre> *  * <pre> -D &lt;class name&gt; *  The full class name of a ResultListener (required). *  eg: weka.experiment.CSVResultListener</pre> *  * <pre> -N &lt;string&gt; *  A string containing any notes about the experiment. *  (default none)</pre> *  * <pre>  * Options specific to result producer weka.experiment.RandomSplitResultProducer: * </pre> *  * <pre> -P &lt;percent&gt; *  The percentage of instances to use for training. *  (default 66)</pre> *  * <pre> -D * Save raw split evaluator output.</pre> *  * <pre> -O &lt;file/directory name/path&gt; *  The filename where raw output will be stored. *  If a directory name is specified then then individual *  outputs will be gzipped, otherwise all output will be *  zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> *  * <pre> -W &lt;class name&gt; *  The full class name of a SplitEvaluator. *  eg: weka.experiment.ClassifierSplitEvaluator</pre> *  * <pre> -R *  Set when data is not to be randomized and the data sets' size. *  Is not to be determined via probabilistic rounding.</pre> *  * <pre>  * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> *  * <pre> -W &lt;class name&gt; *  The full class name of the classifier. *  eg: weka.classifiers.bayes.NaiveBayes</pre> *  * <pre> -C &lt;index&gt; *  The index of the class for which IR statistics *  are to be output. (default 1)</pre> *  * <pre> -I &lt;index&gt; *  The index of an attribute to output in the *  results. This attribute should identify an *  instance in order to know which instances are *  in the test set of a cross validation. if 0 *  no output (default 0).</pre> *  * <pre> -P *  Add target and prediction columns to the result *  for each fold.</pre> *  * <pre>  * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * All options after -- will be passed to the result producer. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.24 $ */public class Experiment   implements Serializable, OptionHandler {    /** for serialization */  static final long serialVersionUID = 44945596742646663L;    /** The filename extension that should be used for experiment files */  public static String FILE_EXTENSION = ".exp";  /** Where results will be sent */  protected ResultListener m_ResultListener = new InstancesResultListener();    /** The result producer */  protected ResultProducer m_ResultProducer = new RandomSplitResultProducer();  /** Lower run number */  protected int m_RunLower = 1;  /** Upper run number */  protected int m_RunUpper = 10;  /** An array of dataset files */  protected DefaultListModel m_Datasets = new DefaultListModel();  /** True if the exp should also iterate over a property of the RP */  protected boolean m_UsePropertyIterator = false;    /** The path to the iterator property */  protected PropertyNode [] m_PropertyPath;    /** The array of values to set the property to */  protected Object m_PropertyArray;  /** User notes about the experiment */  protected String m_Notes = "";  /** Method names of additional measures of objects contained in the       custom property iterator. Only methods names beginning with "measure"      and returning doubles are recognised */  protected String [] m_AdditionalMeasures = null;  /** True if the class attribute is the first attribute for all      datasets involved in this experiment. */  protected boolean m_ClassFirst = false;  /** If true an experiment will advance the current data set befor      any custom itererator */  protected boolean m_AdvanceDataSetFirst = true;  /**   * Sets whether the first attribute is treated as the class   * for all datasets involved in the experiment. This information   * is not output with the result of the experiments!   *    * @param flag	whether the class attribute is the first and not the last   */  public void classFirst(boolean flag) {        m_ClassFirst = flag;  }    /**   * Get the value of m_DataSetFirstFirst.   *   * @return Value of m_DataSetFirstFirst.   */  public boolean getAdvanceDataSetFirst() {        return m_AdvanceDataSetFirst;  }    /**   * Set the value of m_AdvanceDataSetFirst.   *   * @param newAdvanceDataSetFirst Value to assign to m_AdvanceRunFirst.   */  public void setAdvanceDataSetFirst(boolean newAdvanceDataSetFirst) {        m_AdvanceDataSetFirst = newAdvanceDataSetFirst;  }    /**   * Gets whether the custom property iterator should be used.   *   * @return true if so   */  public boolean getUsePropertyIterator() {        return m_UsePropertyIterator;  }  /**   * Sets whether the custom property iterator should be used.   *   * @param newUsePropertyIterator true if so   */  public void setUsePropertyIterator(boolean newUsePropertyIterator) {        m_UsePropertyIterator = newUsePropertyIterator;  }  /**   * Gets the path of properties taken to get to the custom property   * to iterate over.   *   * @return an array of PropertyNodes   */  public PropertyNode [] getPropertyPath() {        return m_PropertyPath;  }    /**   * Sets the path of properties taken to get to the custom property   * to iterate over.   *   * @param newPropertyPath an array of PropertyNodes   */  public void setPropertyPath(PropertyNode [] newPropertyPath) {        m_PropertyPath = newPropertyPath;  }    /**   * Sets the array of values to set the custom property to.   *   * @param newPropArray a value of type Object which should be an   * array of the appropriate values.   */  public void setPropertyArray(Object newPropArray) {    m_PropertyArray = newPropArray;  }  /**   * Gets the array of values to set the custom property to.   *   * @return a value of type Object which should be an   * array of the appropriate values.   */  public Object getPropertyArray() {    return m_PropertyArray;  }  /**   * Gets the number of custom iterator values that have been defined   * for the experiment.   *   * @return the number of custom property iterator values.   */  public int getPropertyArrayLength() {    return Array.getLength(m_PropertyArray);  }  /**   * Gets a specified value from the custom property iterator array.   *   * @param index the index of the value wanted   * @return the property array value   */  public Object getPropertyArrayValue(int index) {    return Array.get(m_PropertyArray, index);  }    /* These may potentially want to be made un-transient if it is decided   * that experiments may be saved mid-run and later resumed   */  /** The current run number when the experiment is running */  protected transient int m_RunNumber;  /** The current dataset number when the experiment is running */  protected transient int m_DatasetNumber;  /** The current custom property value index when the experiment is running */  protected transient int m_PropertyNumber;  /** True if the experiment has finished running */  protected transient boolean m_Finished = true;  /** The dataset currently being used */  protected transient Instances m_CurrentInstances;  /** The custom property value that has actually been set */  protected transient int m_CurrentProperty;  /**   * When an experiment is running, this returns the current run number.   *   * @return the current run number.   */  public int getCurrentRunNumber() {    return m_RunNumber;  }  /**   * When an experiment is running, this returns the current dataset number.   *   * @return the current dataset number.   */  public int getCurrentDatasetNumber() {    return m_DatasetNumber;  }  /**   * When an experiment is running, this returns the index of the   * current custom property value.   *   * @return the index of the current custom property value.   */  public int getCurrentPropertyNumber() {    return m_PropertyNumber;  }    /**   * Prepares an experiment for running, initializing current iterator   * settings.   *   * @throws Exception if an error occurs   */  public void initialize() throws Exception {        m_RunNumber = getRunLower();    m_DatasetNumber = 0;    m_PropertyNumber = 0;    m_CurrentProperty = -1;    m_CurrentInstances = null;    m_Finished = false;    if (m_UsePropertyIterator && (m_PropertyArray == null)) {      throw new Exception("Null array for property iterator");    }    if (getRunLower() > getRunUpper()) {      throw new Exception("Lower run number is greater than upper run number");    }    if (getDatasets().size() == 0) {      throw new Exception("No datasets have been specified");    }    if (m_ResultProducer == null) {      throw new Exception("No ResultProducer set");    }    if (m_ResultListener == null) {      throw new Exception("No ResultListener set");    }    //    if (m_UsePropertyIterator && (m_PropertyArray != null)) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -