📄 checkclassifier.java
字号:
println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks basic prediction of the scheme, for simple non-troublesome * datasets. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NOMINAL, NUMERIC, etc.) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canPredict( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("basic predict"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("nominal"); accepts.addElement("numeric"); accepts.addElement("string"); accepts.addElement("date"); accepts.addElement("relational"); accepts.addElement("multi-instance"); accepts.addElement("not in classpath"); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether nominal schemes can handle more than two classes. * If a scheme is only designed for two-class problems it should * throw an appropriate exception for multi-class problems. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param numClasses the number of classes to test * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleNClasses( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int numClasses) { print("more than two class problems"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL); print("..."); FastVector accepts = new FastVector(); accepts.addElement("number"); accepts.addElement("class"); int numTrain = getNumInstances(), numTest = getNumInstances(), missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle class attributes as Nth attribute. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the index of the class attribute (0-based, -1 means last attribute) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable * @see TestInstances#CLASS_IS_LAST */ protected boolean[] canHandleClassAsNthAttribute( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, int classIndex) { if (classIndex == TestInstances.CLASS_IS_LAST) print("class attribute as last attribute"); else print("class attribute as " + (classIndex + 1) + ". attribute"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, classIndex, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle zero training instances. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleZeroTraining( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("handle zero training instances"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("train"); accepts.addElement("value"); int numTrain = 0, numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme correctly initialises models when * buildClassifier is called. This test calls buildClassifier with * one training dataset and records performance on a test set. * buildClassifier is then called on a training set with different * structure, and then again with the original training set. The * performance on the test set is compared with the original results * and any performance difference noted as incorrect build initialisation. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if the * scheme performs worse than ZeroR, but without error (index 0 is * false) */ protected boolean[] correctBuildInitialisation( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { boolean[] result = new boolean[2]; print("correct initialisation during buildClassifier"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; Instances train1 = null; Instances test1 = null; Instances train2 = null; Instances test2 = null; Classifier classifier = null; Evaluation evaluation1A = null; Evaluation evaluation1B = null; Evaluation evaluation2 = null; boolean built = false; int stage = 0; try { // Make two sets of train/test splits with different // numbers of attributes train1 = makeTestDataset(42, numTrain, nominalPredictor ? 2 : 0, numericPredictor ? 1 : 0, stringPredictor ? 1 : 0, datePredictor ? 1 : 0, relationalPredictor ? 1 : 0, numClasses, classType, multiInstance); train2 = makeTestDataset(84, numTrain, nominalPredictor ? 3 : 0, numericPredictor ? 2 : 0, stringPredictor ? 1 : 0, datePredictor ? 1 : 0, relationalPredictor ? 1 : 0, numClasses, classType, multiInstance); test1 = makeTestDataset(24, numTest, nominalPredictor ? 2 : 0, numericPredictor ? 1 : 0, stringPredictor ? 1 : 0, datePredictor ? 1 : 0, relationalPredictor ? 1 : 0, numClasses, classType, multiInstance); test2 = makeTestDataset(48, numTest, nominalPredictor ? 3 : 0, numericPredictor ? 2 : 0, stringPredictor ? 1 : 0, datePredictor ? 1 : 0, relationalPredictor ? 1 : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train1, missingLevel, predictorMissing, classMissing); addMissing(test1, Math.min(missingLevel,50), predictorMissing, classMissing); addMissing(train2, missingLevel, predictorMissing, classMissing); addMissing(test2, Math.min(missingLevel,50), predictorMissing, classMissing); } classifier = Classifier.makeCopies(getClassifier(), 1)[0]; evaluation1A = new Evaluation(train1); evaluation1B = new Evaluation(train1); evaluation2 = new Evaluation(train2); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { stage = 0; classifier.buildClassifier(train1); built = true; if (!testWRTZeroR(classifier, evaluation1A, train1, test1)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 1; built = false; classifier.buildClassifier(train2); built = true; if (!testWRTZeroR(classifier, evaluation2, train2, test2)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 2; built = false; classifier.buildClassifier(train1); built = true; if (!testWRTZeroR(classifier, evaluation1B, train1, test1)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 3; if (!evaluation1A.equals(evaluation1B)) { if (m_Debug) { println("\n=== Full report ===\n" + evaluation1A.toSummaryString("\nFirst buildClassifier()", true) + "\n\n"); println( evaluation1B.toSummaryString("\nSecond buildClassifier()", true) + "\n\n"); } throw new Exception("Results differ between buildClassifier calls"); } println("yes"); result[0] = true; if (false && m_Debug) { println("\n=== Full report ===\n" + evaluation1A.toSummaryString("\nFirst buildClassifier()", true) + "\n\n"); println( evaluation1B.toSummaryString("\nSecond buildClassifier()", true) + "\n\n"); } } catch (Exception ex) { String msg = ex.getMessage().toLowerCase(); if (msg.indexOf("worse than zeror") >= 0) { println("warning: performs worse than ZeroR"); result[0] = true; result[1] = true; } else { println("no"); result[0] = false; } if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } switch (stage) { case 0:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -