📄 simplemi.java
字号:
return new SelectedTag(m_TransformMethod, TAGS_TRANSFORMMETHOD); } /** * Implements MITransform (3 type of transformation) 1.arithmatic average; * 2.geometric centor; 3.merge minima and maxima attribute value together * * @param train the multi-instance dataset (with relational attribute) * @return the transformed dataset with each bag contain mono-instance * (without relational attribute) so that any classifier not for MI dataset * can be applied on it. * @throws Exception if the transformation fails */ public Instances transform(Instances train) throws Exception{ Attribute classAttribute = (Attribute) train.classAttribute().copy(); Attribute bagLabel = (Attribute) train.attribute(0); double labelValue; Instances newData = train.attribute(1).relation().stringFreeStructure(); //insert a bag label attribute at the begining newData.insertAttributeAt(bagLabel, 0); //insert a class attribute at the end newData.insertAttributeAt(classAttribute, newData.numAttributes()); newData.setClassIndex(newData.numAttributes()-1); Instances mini_data = newData.stringFreeStructure(); Instances max_data = newData.stringFreeStructure(); Instance newInst = new Instance (newData.numAttributes()); Instance mini_Inst = new Instance (mini_data.numAttributes()); Instance max_Inst = new Instance (max_data.numAttributes()); newInst.setDataset(newData); mini_Inst.setDataset(mini_data); max_Inst.setDataset(max_data); double N= train.numInstances( );//number of bags for(int i=0; i<N; i++){ int attIdx =1; Instance bag = train.instance(i); //retrieve the bag instance labelValue= bag.value(0); if (m_TransformMethod != TRANSFORMMETHOD_MINIMAX) newInst.setValue(0, labelValue); else { mini_Inst.setValue(0, labelValue); max_Inst.setValue(0, labelValue); } Instances data = bag.relationalValue(1); // retrieve relational value for each bag for(int j=0; j<data.numAttributes( ); j++){ double value; if(m_TransformMethod == TRANSFORMMETHOD_ARITHMETIC){ value = data.meanOrMode(j); newInst.setValue(attIdx++, value); } else if (m_TransformMethod == TRANSFORMMETHOD_GEOMETRIC){ double[] minimax = minimax(data, j); value = (minimax[0]+minimax[1])/2.0; newInst.setValue(attIdx++, value); } else { //m_TransformMethod == TRANSFORMMETHOD_MINIMAX double[] minimax = minimax(data, j); mini_Inst.setValue(attIdx, minimax[0]);//minima value max_Inst.setValue(attIdx, minimax[1]);//maxima value attIdx++; } } if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { if (!bag.classIsMissing()) max_Inst.setClassValue(bag.classValue()); //set class value mini_data.add(mini_Inst); max_data.add(max_Inst); } else{ if (!bag.classIsMissing()) newInst.setClassValue(bag.classValue()); //set class value newData.add(newInst); } } if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { mini_data.setClassIndex(-1); mini_data.deleteAttributeAt(mini_data.numAttributes()-1); //delete class attribute for the minima data max_data.deleteAttributeAt(0); // delete the bag label attribute for the maxima data newData = Instances.mergeInstances(mini_data, max_data); //merge minima and maxima data newData.setClassIndex(newData.numAttributes()-1); } return newData; } /** * Get the minimal and maximal value of a certain attribute in a certain data * * @param data the data * @param attIndex the index of the attribute * @return the double array containing in entry 0 for min and 1 for max. */ public static double[] minimax(Instances data, int attIndex){ double[] rt = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; for(int i=0; i<data.numInstances(); i++){ double val = data.instance(i).value(attIndex); if(val > rt[1]) rt[1] = val; if(val < rt[0]) rt[0] = val; } for(int j=0; j<2; j++) if(Double.isInfinite(rt[j])) rt[j] = Double.NaN; return rt; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.disableAllClassDependencies(); if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) result.enable(Capability.NOMINAL_CLASS); if (super.getCapabilities().handles(Capability.BINARY_CLASS)) result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * Builds the classifier * * @param train the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances train) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(train); // remove instances with missing class train = new Instances(train); train.deleteWithMissingClass(); if (m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } if (getDebug()) System.out.println("Start training ..."); Instances data = transform(train); data.deleteAttributeAt(0); // delete the bagID attribute m_Classifier.buildClassifier(data); if (getDebug()) System.out.println("Finish building model"); } /** * Computes the distribution for a given exemplar * * @param newBag the exemplar for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance newBag) throws Exception { double [] distribution = new double[2]; Instances test = new Instances (newBag.dataset(), 0); test.add(newBag); test = transform(test); test.deleteAttributeAt(0); Instance newInst=test.firstInstance(); distribution = m_Classifier.distributionForInstance(newInst); return distribution; } /** * Gets a string describing the classifier. * * @return a string describing the classifer built. */ public String toString() { return "SimpleMI with base classifier: \n"+m_Classifier.toString(); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String[] argv) { try { System.out.println(Evaluation.evaluateModel(new SimpleMI(), argv)); } catch (Exception e) { e.printStackTrace(); System.err.println(e.getMessage()); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -