⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simplemi.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * SimpleMI.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand */package weka.classifiers.mi;import weka.classifiers.SingleClassifierEnhancer;import weka.classifiers.Evaluation;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.Capabilities.Capability;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Reduces MI data into mono-instance data. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -M [1|2|3] *  The method used in transformation: *  1.arithmatic average; 2.geometric centor; *  3.using minimax combined features of a bag (default: 1) *  *  Method 3: *  Define s to be the vector of the coordinate-wise maxima *  and minima of X, ie.,  *  s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform *  the exemplars into mono-instance which contains attributes *  s(X)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.rules.ZeroR)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @author Lin Dong (ld21@cs.waikato.ac.nz) * @version $Revision: 1.3 $  */public class SimpleMI   extends SingleClassifierEnhancer  implements OptionHandler, MultiInstanceCapabilitiesHandler {    /** for serialization */  static final long serialVersionUID = 9137795893666592662L;    /** arithmetic average */  public static final int TRANSFORMMETHOD_ARITHMETIC = 1;  /** geometric average */  public static final int TRANSFORMMETHOD_GEOMETRIC = 2;  /** using minimax combined features of a bag */  public static final int TRANSFORMMETHOD_MINIMAX = 3;  /** the transformation methods */  public static final Tag[] TAGS_TRANSFORMMETHOD = {    new Tag(TRANSFORMMETHOD_ARITHMETIC, "arithmetic average"),    new Tag(TRANSFORMMETHOD_GEOMETRIC, "geometric average"),    new Tag(TRANSFORMMETHOD_MINIMAX, "using minimax combined features of a bag")  };  /** the method used in transformation */  protected int m_TransformMethod = TRANSFORMMETHOD_ARITHMETIC;  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Reduces MI data into mono-instance data.";  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector result = new Vector();    result.addElement(new Option(          "\tThe method used in transformation:\n"          + "\t1.arithmatic average; 2.geometric centor;\n"          + "\t3.using minimax combined features of a bag (default: 1)\n\n"          + "\tMethod 3:\n"          + "\tDefine s to be the vector of the coordinate-wise maxima\n"          + "\tand minima of X, ie., \n"          + "\ts(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform\n"          + "\tthe exemplars into mono-instance which contains attributes\n"          + "\ts(X)",          "M", 1, "-M [1|2|3]"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      result.addElement(enu.nextElement());    }    return result.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -M [1|2|3]   *  The method used in transformation:   *  1.arithmatic average; 2.geometric centor;   *  3.using minimax combined features of a bag (default: 1)   *    *  Method 3:   *  Define s to be the vector of the coordinate-wise maxima   *  and minima of X, ie.,    *  s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform   *  the exemplars into mono-instance which contains attributes   *  s(X)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.rules.ZeroR)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.rules.ZeroR:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {	    setDebug(Utils.getFlag('D', options));    String methodString = Utils.getOption('M', options);    if (methodString.length() != 0) {      setTransformMethod(          new SelectedTag(            Integer.parseInt(methodString), TAGS_TRANSFORMMETHOD));    } else {      setTransformMethod(          new SelectedTag(            TRANSFORMMETHOD_ARITHMETIC, TAGS_TRANSFORMMETHOD));    }	    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector        result;    String[]      options;    int           i;        result  = new Vector();    options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);        result.add("-M");    result.add("" + m_TransformMethod);    return (String[]) result.toArray(new String[result.size()]);  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String transformMethodTipText() {    return "The method used in transformation.";  }  /**   * Set the method used in transformation.    *   * @param newMethod the index of method to use.   */  public void setTransformMethod(SelectedTag newMethod) {    if (newMethod.getTags() == TAGS_TRANSFORMMETHOD)      m_TransformMethod = newMethod.getSelectedTag().getID();  }  /**   * Get the method used in transformation.   *   * @return the index of method used.   */  public SelectedTag getTransformMethod() {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -