⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vote.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Vote.java *    Copyright (C) 2000 Alexander K. Seewald * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.MultipleClassifiersCombiner;import weka.core.Instance;import weka.core.Instances;/** <!-- globalinfo-start --> * Class for combining classifiers using unweighted average of probability estimates (classification) or numeric predictions (regression). * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -B &lt;classifier specification&gt; *  Full class name of classifier to include, followed *  by scheme options. May be specified multiple times. *  (default: "weka.classifiers.rules.ZeroR")</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * @author Alexander K. Seewald (alex@seewald.at) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.9 $ */public class Vote extends MultipleClassifiersCombiner {      /** for serialization */  static final long serialVersionUID = -637891196294399624L;    /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Class for combining classifiers using unweighted average of "      + "probability estimates (classification) or numeric predictions "      + "(regression).";  }  /**   * Buildclassifier selects a classifier from the set of classifiers   * by minimising error on the training data.   *   * @param data the training data to be used for generating the   * boosted classifier.   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    Instances newData = new Instances(data);    newData.deleteWithMissingClass();        for (int i = 0; i < m_Classifiers.length; i++) {      getClassifier(i).buildClassifier(data);    }  }  /**   * Classifies a given instance using the selected classifier.   *   * @param instance the instance to be classified   * @return the distribution   * @throws Exception if instance could not be classified   * successfully   */  public double[] distributionForInstance(Instance instance) throws Exception {    double[] probs = getClassifier(0).distributionForInstance(instance);    for (int i = 1; i < m_Classifiers.length; i++) {      double[] dist = getClassifier(i).distributionForInstance(instance);      for (int j = 0; j < dist.length; j++) {	probs[j] += dist[j];      }    }    for (int j = 0; j < probs.length; j++) {      probs[j] /= (double)m_Classifiers.length;    }    return probs;  }  /**   * Output a representation of this classifier   *    * @return a string representation of the classifier   */  public String toString() {    if (m_Classifiers == null) {      return "Vote: No model built yet.";    }    String result = "Vote combines";    result += " the probability distributions of these base learners:\n";    for (int i = 0; i < m_Classifiers.length; i++) {      result += '\t' + getClassifierSpec(i) + '\n';    }    return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation.evaluateModel(new Vote(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -