📄 lmtnode.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * LMTNode.java * Copyright (C) 2003 Niels Landwehr * */package weka.classifiers.trees.lmt;import weka.classifiers.Evaluation;import weka.classifiers.functions.SimpleLinearRegression;import weka.classifiers.trees.j48.ClassifierSplitModel;import weka.classifiers.trees.j48.ModelSelection;import weka.core.Instance;import weka.core.Instances;import weka.filters.Filter;import weka.filters.supervised.attribute.NominalToBinary;import java.util.Collections;import java.util.Comparator;import java.util.Vector;/** * Auxiliary class for list of LMTNodes */class CompareNode implements Comparator { /** * Compares its two arguments for order. * * @param o1 first object * @param o2 second object * @return a negative integer, zero, or a positive integer as the first * argument is less than, equal to, or greater than the second. */ public int compare(Object o1, Object o2) { if ( ((LMTNode)o1).m_alpha < ((LMTNode)o2).m_alpha) return -1; if ( ((LMTNode)o1).m_alpha > ((LMTNode)o2).m_alpha) return 1; return 0; } }/** * Class for logistic model tree structure. * * * @author Niels Landwehr * @author Marc Sumner * @version $Revision: 1.4 $ */public class LMTNode extends LogisticBase { /** for serialization */ static final long serialVersionUID = 1862737145870398755L; /** Total number of training instances. */ protected double m_totalInstanceWeight; /** Node id*/ protected int m_id; /** ID of logistic model at leaf*/ protected int m_leafModelNum; /** Alpha-value (for pruning) at the node*/ public double m_alpha; /** Weighted number of training examples currently misclassified by the logistic model at the node*/ public double m_numIncorrectModel; /** Weighted number of training examples currently misclassified by the subtree rooted at the node*/ public double m_numIncorrectTree; /**minimum number of instances at which a node is considered for splitting*/ protected int m_minNumInstances; /**ModelSelection object (for splitting)*/ protected ModelSelection m_modelSelection; /**Filter to convert nominal attributes to binary*/ protected NominalToBinary m_nominalToBinary; /**Simple regression functions fit by LogitBoost at higher levels in the tree*/ protected SimpleLinearRegression[][] m_higherRegressions; /**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/ protected int m_numHigherRegressions = 0; /**Number of folds for CART pruning*/ protected static int m_numFoldsPruning = 5; /**Use heuristic that determines the number of LogitBoost iterations only once in the beginning? */ protected boolean m_fastRegression; /**Number of instances at the node*/ protected int m_numInstances; /**The ClassifierSplitModel (for splitting)*/ protected ClassifierSplitModel m_localModel; /**Array of children of the node*/ protected LMTNode[] m_sons; /**True if node is leaf*/ protected boolean m_isLeaf; /** * Constructor for logistic model tree node. * * @param modelSelection selection method for local splitting model * @param numBoostingIterations sets the numBoostingIterations parameter * @param fastRegression sets the fastRegression parameter * @param errorOnProbabilities Use error on probabilities for stopping criterion of LogitBoost? * @param minNumInstances minimum number of instances at which a node is considered for splitting */ public LMTNode(ModelSelection modelSelection, int numBoostingIterations, boolean fastRegression, boolean errorOnProbabilities, int minNumInstances, double weightTrimBeta, boolean useAIC) { m_modelSelection = modelSelection; m_fixedNumIterations = numBoostingIterations; m_fastRegression = fastRegression; m_errorOnProbabilities = errorOnProbabilities; m_minNumInstances = minNumInstances; m_maxIterations = 200; setWeightTrimBeta(weightTrimBeta); setUseAIC(useAIC); } /** * Method for building a logistic model tree (only called for the root node). * Grows an initial logistic model tree and prunes it back using the CART pruning scheme. * * @param data the data to train with * @throws Exception if something goes wrong */ public void buildClassifier(Instances data) throws Exception{ //heuristic to avoid cross-validating the number of LogitBoost iterations //at every node: build standalone logistic model and take its optimum number //of iteration everywhere in the tree. if (m_fastRegression && (m_fixedNumIterations < 0)) m_fixedNumIterations = tryLogistic(data); //Need to cross-validate alpha-parameter for CART-pruning Instances cvData = new Instances(data); cvData.stratify(m_numFoldsPruning); double[][] alphas = new double[m_numFoldsPruning][]; double[][] errors = new double[m_numFoldsPruning][]; for (int i = 0; i < m_numFoldsPruning; i++) { //for every fold, grow tree on training set... Instances train = cvData.trainCV(m_numFoldsPruning, i); Instances test = cvData.testCV(m_numFoldsPruning, i); buildTree(train, null, train.numInstances() , 0); int numNodes = getNumInnerNodes(); alphas[i] = new double[numNodes + 2]; errors[i] = new double[numNodes + 2]; //... then prune back and log alpha-values and errors on test set prune(alphas[i], errors[i], test); } //build tree using all the data buildTree(data, null, data.numInstances(), 0); int numNodes = getNumInnerNodes(); double[] treeAlphas = new double[numNodes + 2]; //prune back and log alpha-values int iterations = prune(treeAlphas, null, null); double[] treeErrors = new double[numNodes + 2]; for (int i = 0; i <= iterations; i++){ //compute midpoint alphas double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]); double error = 0; //compute error estimate for final trees from the midpoint-alphas and the error estimates gotten in //the cross-validation for (int k = 0; k < m_numFoldsPruning; k++) { int l = 0; while (alphas[k][l] <= alpha) l++; error += errors[k][l - 1]; } treeErrors[i] = error; } //find best alpha int best = -1; double bestError = Double.MAX_VALUE; for (int i = iterations; i >= 0; i--) { if (treeErrors[i] < bestError) { bestError = treeErrors[i]; best = i; } } double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]); //"unprune" final tree (faster than regrowing it) unprune(); //CART-prune it with best alpha prune(bestAlpha); cleanup(); } /** * Method for building the tree structure. * Builds a logistic model, splits the node and recursively builds tree for child nodes. * @param data the training data passed on to this node * @param higherRegressions An array of regression functions produced by LogitBoost at higher * levels in the tree. They represent a logistic regression model that is refined locally * at this node. * @param totalInstanceWeight the total number of training examples * @param higherNumParameters effective number of parameters in the logistic regression model built * in parent nodes * @throws Exception if something goes wrong */ public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters) throws Exception{ //save some stuff m_totalInstanceWeight = totalInstanceWeight; m_train = new Instances(data); m_isLeaf = true; m_sons = null; m_numInstances = m_train.numInstances(); m_numClasses = m_train.numClasses(); //init m_numericData = getNumericData(m_train); m_numericDataHeader = new Instances(m_numericData, 0); m_regressions = initRegressions(); m_numRegressions = 0; if (higherRegressions != null) m_higherRegressions = higherRegressions; else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0]; m_numHigherRegressions = m_higherRegressions[0].length; m_numParameters = higherNumParameters; //build logistic model if (m_numInstances >= m_numFoldsBoosting) { if (m_fixedNumIterations > 0){ performBoosting(m_fixedNumIterations); } else if (getUseAIC()) { performBoostingInfCriterion(); } else { performBoostingCV(); } } m_numParameters += m_numRegressions; //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations m_regressions = selectRegressions(m_regressions); boolean grow; //split node if more than minNumInstances... if (m_numInstances > m_minNumInstances) { //split node: either splitting on class value (a la C4.5) or splitting on residuals if (m_modelSelection instanceof ResidualModelSelection) { //need ps/Ys/Zs/weights double[][] probs = getProbs(getFs(m_numericData)); double[][] trainYs = getYs(m_train); double[][] dataZs = getZs(probs, trainYs); double[][] dataWs = getWs(probs, trainYs); m_localModel = ((ResidualModelSelection)m_modelSelection).selectModel(m_train, dataZs, dataWs); } else { m_localModel = m_modelSelection.selectModel(m_train); } //... and valid split found grow = (m_localModel.numSubsets() > 1); } else { grow = false; } if (grow) { //create and build children of node m_isLeaf = false; Instances[] localInstances = m_localModel.split(m_train); m_sons = new LMTNode[m_localModel.numSubsets()]; for (int i = 0; i < m_sons.length; i++) { m_sons[i] = new LMTNode(m_modelSelection, m_fixedNumIterations, m_fastRegression, m_errorOnProbabilities,m_minNumInstances, getWeightTrimBeta(), getUseAIC()); //the "higherRegressions" (partial logistic model fit at higher levels in the tree) passed //on to the children are the "higherRegressions" at this node plus the regressions added //at this node (m_regressions). m_sons[i].buildTree(localInstances[i], mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight, m_numParameters); localInstances[i] = null; } } } /** * Prunes a logistic model tree using the CART pruning scheme, given a * cost-complexity parameter alpha. * * @param alpha the cost-complexity measure * @throws Exception if something goes wrong */ public void prune(double alpha) throws Exception { Vector nodeList; CompareNode comparator = new CompareNode(); //determine training error of logistic models and subtrees, and calculate alpha-values from them modelErrors(); treeErrors(); calculateAlphas(); //get list of all inner nodes in the tree nodeList = getNodes(); boolean prune = (nodeList.size() > 0); while (prune) { //select node with minimum alpha LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator); //want to prune if its alpha is smaller than alpha if (nodeToPrune.m_alpha > alpha) break; nodeToPrune.m_isLeaf = true; nodeToPrune.m_sons = null; //update tree errors and alphas treeErrors(); calculateAlphas(); nodeList = getNodes(); prune = (nodeList.size() > 0); } } /** * Method for performing one fold in the cross-validation of the cost-complexity parameter. * Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned) * trees, given the test set of that fold. * @param alphas array to hold the generated alpha-values * @param errors array to hold the corresponding error estimates * @param test test set of that fold (to obtain error estimates) * @throws if something goes wrong */ public int prune(double[] alphas, double[] errors, Instances test) throws Exception { Vector nodeList; CompareNode comparator = new CompareNode(); //determine training error of logistic models and subtrees, and calculate alpha-values from them modelErrors(); treeErrors(); calculateAlphas(); //get list of all inner nodes in the tree nodeList = getNodes(); boolean prune = (nodeList.size() > 0); //alpha_0 is always zero (unpruned tree) alphas[0] = 0; Evaluation eval; //error of unpruned tree if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[0] = eval.errorRate(); } int iteration = 0; while (prune) { iteration++; //get node with minimum alpha LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator); nodeToPrune.m_isLeaf = true; //Do not set m_sons null, want to unprune //get alpha-value of node alphas[iteration] = nodeToPrune.m_alpha; //log error if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[iteration] = eval.errorRate(); } //update errors/alphas treeErrors(); calculateAlphas(); nodeList = getNodes(); prune = (nodeList.size() > 0); } //set last alpha 1 to indicate end alphas[iteration + 1] = 1.0; return iteration; } /** *Method to "unprune" a logistic model tree. *Sets all leaf-fields to false. *Faster than re-growing the tree because the logistic models do not have to be fit again. */ protected void unprune() { if (m_sons != null) { m_isLeaf = false; for (int i = 0; i < m_sons.length; i++) m_sons[i].unprune(); } } /** *Determines the optimum number of LogitBoost iterations to perform by building a standalone logistic *regression function on the training data. Used for the heuristic that avoids cross-validating this *number again at every node. *@param data training instances for the logistic model *@throws if something goes wrong */ protected int tryLogistic(Instances data) throws Exception{ //convert nominal attributes Instances filteredData = new Instances(data); NominalToBinary nominalToBinary = new NominalToBinary(); nominalToBinary.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, nominalToBinary); LogisticBase logistic = new LogisticBase(0,true,m_errorOnProbabilities); //limit LogitBoost to 200 iterations (speed) logistic.setMaxIterations(200); logistic.setWeightTrimBeta(getWeightTrimBeta()); // Not in Marc's code. Added by Eibe. logistic.setUseAIC(getUseAIC());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -