⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 winnow.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
      }    }  }    /**   * Updates the classifier with a new learning example   *   * @param instance the instance to update the classifier with   * @throws Exception if something goes wrong   */  public void updateClassifier(Instance instance) throws Exception {	    m_ReplaceMissingValues.input(instance);    m_ReplaceMissingValues.batchFinished();    Instance filtered = m_ReplaceMissingValues.output();    m_NominalToBinary.input(filtered);    m_NominalToBinary.batchFinished();    filtered = m_NominalToBinary.output();    if(m_Balanced) {      actualUpdateClassifierBalanced(filtered);    } else {      actualUpdateClassifier(filtered);    }  }    /**   * Actual update routine for prefiltered instances   *   * @param inst the instance to update the classifier with   * @throws Exception if something goes wrong   */  private void actualUpdateClassifier(Instance inst) throws Exception {        double posmultiplier;	    if (!inst.classIsMissing()) {      double prediction = makePrediction(inst);         if (prediction != inst.classValue()) {	m_Mistakes++;	if(prediction == 0) {	  /* false neg: promote */	  posmultiplier=m_Alpha;	} else {	  /* false pos: demote */	  posmultiplier=m_Beta;	}	int n1 = inst.numValues(); int classIndex = m_Train.classIndex();	for(int l = 0 ; l < n1 ; l++) {	  if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {	    m_predPosVector[inst.index(l)]*=posmultiplier;	  }	}	//Utils.normalize(m_predPosVector);      }    }    else {      System.out.println("CLASS MISSING");    }  }    /**   * Actual update routine (balanced) for prefiltered instances   *   * @param inst the instance to update the classifier with   * @throws Exception if something goes wrong   */  private void actualUpdateClassifierBalanced(Instance inst) throws Exception {        double posmultiplier,negmultiplier;    if (!inst.classIsMissing()) {      double prediction = makePredictionBalanced(inst);              if (prediction != inst.classValue()) {	m_Mistakes++;		if(prediction == 0) {	  /* false neg: promote positive, demote negative*/	  posmultiplier=m_Alpha;	  negmultiplier=m_Beta;	} else {	  /* false pos: demote positive, promote negative */	  posmultiplier=m_Beta;	  negmultiplier=m_Alpha;	}	int n1 = inst.numValues(); int classIndex = m_Train.classIndex();	for(int l = 0 ; l < n1 ; l++) {	  if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {	    m_predPosVector[inst.index(l)]*=posmultiplier;	    m_predNegVector[inst.index(l)]*=negmultiplier;	  }	}	//Utils.normalize(m_predPosVector);	//Utils.normalize(m_predNegVector);      }    }    else {      System.out.println("CLASS MISSING");    }  }  /**   * Outputs the prediction for the given instance.   *   * @param inst the instance for which prediction is to be computed   * @return the prediction   * @throws Exception if something goes wrong   */  public double classifyInstance(Instance inst) throws Exception {    m_ReplaceMissingValues.input(inst);    m_ReplaceMissingValues.batchFinished();    Instance filtered = m_ReplaceMissingValues.output();    m_NominalToBinary.input(filtered);    m_NominalToBinary.batchFinished();    filtered = m_NominalToBinary.output();    if(m_Balanced) {      return(makePredictionBalanced(filtered));    } else {      return(makePrediction(filtered));    }  }    /**    * Compute the actual prediction for prefiltered instance   *   * @param inst the instance for which prediction is to be computed   * @return the prediction   * @throws Exception if something goes wrong   */  private double makePrediction(Instance inst) throws Exception {    double total = 0;    int n1 = inst.numValues(); int classIndex = m_Train.classIndex();	    for(int i=0;i<n1;i++) {      if(inst.index(i) != classIndex && inst.valueSparse(i)==1) {	total+=m_predPosVector[inst.index(i)];      }    }        if(total > m_actualThreshold) {      return(1);    } else {      return(0);    }  }    /**    * Compute our prediction (Balanced) for prefiltered instance    *   * @param inst the instance for which prediction is to be computed   * @return the prediction   * @throws Exception if something goes wrong   */  private double makePredictionBalanced(Instance inst) throws Exception {    double total=0;	    int n1 = inst.numValues(); int classIndex = m_Train.classIndex();    for(int i=0;i<n1;i++) {      if(inst.index(i) != classIndex && inst.valueSparse(i)==1) {	total+=(m_predPosVector[inst.index(i)]-m_predNegVector[inst.index(i)]);      }    }         if(total > m_actualThreshold) {      return(1);    } else {      return(0);    }  }  /**   * Returns textual description of the classifier.   *    * @return textual description of the classifier   */  public String toString() {    if(m_predPosVector==null)      return("Winnow: No model built yet.");	       String result = "Winnow\n\nAttribute weights\n\n";	    int classIndex = m_Train.classIndex();    if(!m_Balanced) {      for( int i = 0 ; i < m_Train.numAttributes(); i++) {	if(i!=classIndex)	  result += "w" + i + " " + m_predPosVector[i] + "\n";      }    } else {      for( int i = 0 ; i < m_Train.numAttributes(); i++) {	if(i!=classIndex) {	  result += "w" + i + " p " + m_predPosVector[i];	  result += " n " + m_predNegVector[i];	  	  double wdiff=m_predPosVector[i]-m_predNegVector[i];	  	  result += " d " + wdiff + "\n";	}      }    }    result += "\nCumulated mistake count: " + m_Mistakes + "\n\n";	    return(result);  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String balancedTipText() {    return "Whether to use the balanced version of the algorithm.";  }  /**   * Get the value of Balanced.   *   * @return Value of Balanced.   */  public boolean getBalanced() {        return m_Balanced;  }    /**   * Set the value of Balanced.   *   * @param b  Value to assign to Balanced.   */  public void setBalanced(boolean b) {        m_Balanced = b;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String alphaTipText() {    return "Promotion coefficient alpha.";  }    /**   * Get the value of Alpha.   *   * @return Value of Alpha.   */  public double getAlpha() {        return(m_Alpha);  }    /**   * Set the value of Alpha.   *   * @param a  Value to assign to Alpha.   */  public void setAlpha(double a) {        m_Alpha = a;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String betaTipText() {    return "Demotion coefficient beta.";  }    /**   * Get the value of Beta.   *   * @return Value of Beta.   */  public double getBeta() {        return(m_Beta);  }    /**   * Set the value of Beta.   *   * @param b  Value to assign to Beta.   */  public void setBeta(double b) {        m_Beta = b;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String thresholdTipText() {    return "Prediction threshold (-1 means: set to number of attributes).";  }    /**   * Get the value of Threshold.   *   * @return Value of Threshold.   */  public double getThreshold() {        return m_Threshold;  }    /**   * Set the value of Threshold.   *   * @param t  Value to assign to Threshold.   */  public void setThreshold(double t) {        m_Threshold = t;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String defaultWeightTipText() {    return "Initial value of weights/coefficients.";  }    /**   * Get the value of defaultWeight.   *   * @return Value of defaultWeight.   */  public double getDefaultWeight() {        return m_defaultWeight;  }    /**   * Set the value of defaultWeight.   *   * @param w  Value to assign to defaultWeight.   */  public void setDefaultWeight(double w) {        m_defaultWeight = w;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String numIterationsTipText() {    return "The number of iterations to be performed.";  }    /**   * Get the value of numIterations.   *   * @return Value of numIterations.   */  public int getNumIterations() {        return m_numIterations;  }    /**   * Set the value of numIterations.   *   * @param v  Value to assign to numIterations.   */  public void setNumIterations(int v) {        m_numIterations = v;  }       /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String seedTipText() {    return "Random number seed used for data shuffling (-1 means no "      + "randomization).";  }  /**   * Get the value of Seed.   *   * @return Value of Seed.   */  public int getSeed() {        return m_Seed;  }    /**   * Set the value of Seed.   *   * @param v  Value to assign to Seed.   */  public void setSeed(int v) {        m_Seed = v;  }    /**   * Main method.   *    * @param argv the commandline options   */  public static void main(String[] argv) {        try {      System.out.println(Evaluation.evaluateModel(new Winnow(), argv));    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -