⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 winnow.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Winnow.java *    Copyright (C) 2002 J. Lindgren * */package weka.classifiers.functions;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.UpdateableClassifier;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.filters.Filter;import weka.filters.unsupervised.attribute.NominalToBinary;import weka.filters.unsupervised.attribute.ReplaceMissingValues;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Implements Winnow and Balanced Winnow algorithms by Littlestone.<br/> * <br/> * For more information, see<br/> * <br/> * N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.<br/> * <br/> * N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.<br/> * <br/> * Does classification for problems with nominal attributes (which it converts into binary attributes). * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;article{Littlestone1988, *    author = {N. Littlestone}, *    journal = {Machine Learning}, *    pages = {285-318}, *    title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm}, *    volume = {2}, *    year = {1988} * } *  * &#64;techreport{Littlestone1989, *    address = {University of California, Santa Cruz}, *    author = {N. Littlestone}, *    institution = {University of California}, *    note = {Technical Report UCSC-CRL-89-11}, *    title = {Mistake bounds and logarithmic linear-threshold learning algorithms}, *    year = {1989} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -L *  Use the baLanced version *  (default false)</pre> *  * <pre> -I &lt;int&gt; *  The number of iterations to be performed. *  (default 1)</pre> *  * <pre> -A &lt;double&gt; *  Promotion coefficient alpha. *  (default 2.0)</pre> *  * <pre> -B &lt;double&gt; *  Demotion coefficient beta. *  (default 0.5)</pre> *  * <pre> -H &lt;double&gt; *  Prediction threshold. *  (default -1.0 == number of attributes)</pre> *  * <pre> -W &lt;double&gt; *  Starting weights. *  (default 2.0)</pre> *  * <pre> -S &lt;int&gt; *  Default random seed. *  (default 1)</pre> *  <!-- options-end --> * * @author J. Lindgren (jtlindgr at cs.helsinki.fi) * @version $Revision: 1.11 $ */public class Winnow   extends Classifier   implements UpdateableClassifier, TechnicalInformationHandler {    /** for serialization */  static final long serialVersionUID = 3543770107994321324L;    /** Use the balanced variant? **/  protected boolean m_Balanced;   /** The number of iterations **/  protected int m_numIterations = 1;  /** The promotion coefficient **/  protected double m_Alpha = 2.0;  /** The demotion coefficient **/  protected double m_Beta = 0.5;  /** Prediction threshold, <0 == numAttributes **/  protected double m_Threshold = -1.0;    /** Random seed used for shuffling the dataset, -1 == disable **/  protected int m_Seed = 1;  /** Accumulated mistake count (for statistics) **/  protected int m_Mistakes;  /** Starting weights for the prediction vector(s) **/  protected double m_defaultWeight = 2.0;    /** The weight vector for prediction (pos) */  private double[] m_predPosVector = null;    /** The weight vector for prediction (neg) */  private double[] m_predNegVector = null;  /** The true threshold used for prediction **/  private double m_actualThreshold;  /** The training instances */  private Instances m_Train = null;  /** The filter used to make attributes numeric. */  private NominalToBinary m_NominalToBinary;  /** The filter used to get rid of missing values. */  private ReplaceMissingValues m_ReplaceMissingValues;  /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return  "Implements Winnow and Balanced Winnow algorithms by "      + "Littlestone.\n\n"      + "For more information, see\n\n"      + getTechnicalInformation().toString()      + "\n\n"      + "Does classification for problems with nominal attributes "      + "(which it converts into binary attributes).";  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;    TechnicalInformation 	additional;        result = new TechnicalInformation(Type.ARTICLE);    result.setValue(Field.AUTHOR, "N. Littlestone");    result.setValue(Field.YEAR, "1988");    result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm");    result.setValue(Field.JOURNAL, "Machine Learning");    result.setValue(Field.VOLUME, "2");    result.setValue(Field.PAGES, "285-318");        additional = result.add(Type.TECHREPORT);    additional.setValue(Field.AUTHOR, "N. Littlestone");    additional.setValue(Field.YEAR, "1989");    additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms");    additional.setValue(Field.INSTITUTION, "University of California");    additional.setValue(Field.ADDRESS, "University of California, Santa Cruz");    additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11");        return result;  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(7);        newVector.addElement(new Option("\tUse the baLanced version\n"				    + "\t(default false)",				    "L", 0, "-L"));    newVector.addElement(new Option("\tThe number of iterations to be performed.\n"				    + "\t(default 1)",				    "I", 1, "-I <int>"));    newVector.addElement(new Option("\tPromotion coefficient alpha.\n"				    + "\t(default 2.0)",				    "A", 1, "-A <double>"));    newVector.addElement(new Option("\tDemotion coefficient beta.\n"				    + "\t(default 0.5)",				    "B", 1, "-B <double>"));    newVector.addElement(new Option("\tPrediction threshold.\n"				    + "\t(default -1.0 == number of attributes)",				    "H", 1, "-H <double>"));    newVector.addElement(new Option("\tStarting weights.\n"				    + "\t(default 2.0)",				    "W", 1, "-W <double>"));    newVector.addElement(new Option("\tDefault random seed.\n"				    + "\t(default 1)",				    "S", 1, "-S <int>"));    return newVector.elements();  }  /**   * Parses a given list of options.<p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -L   *  Use the baLanced version   *  (default false)</pre>   *    * <pre> -I &lt;int&gt;   *  The number of iterations to be performed.   *  (default 1)</pre>   *    * <pre> -A &lt;double&gt;   *  Promotion coefficient alpha.   *  (default 2.0)</pre>   *    * <pre> -B &lt;double&gt;   *  Demotion coefficient beta.   *  (default 0.5)</pre>   *    * <pre> -H &lt;double&gt;   *  Prediction threshold.   *  (default -1.0 == number of attributes)</pre>   *    * <pre> -W &lt;double&gt;   *  Starting weights.   *  (default 2.0)</pre>   *    * <pre> -S &lt;int&gt;   *  Default random seed.   *  (default 1)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        m_Balanced = Utils.getFlag('L', options);	    String iterationsString = Utils.getOption('I', options);    if (iterationsString.length() != 0) {      m_numIterations = Integer.parseInt(iterationsString);    }    String alphaString = Utils.getOption('A', options);    if (alphaString.length() != 0) {       m_Alpha = (new Double(alphaString)).doubleValue();    }    String betaString = Utils.getOption('B', options);    if (betaString.length() != 0) {      m_Beta = (new Double(betaString)).doubleValue();    }    String tString = Utils.getOption('H', options);    if (tString.length() != 0) {      m_Threshold = (new Double(tString)).doubleValue();    }    String wString = Utils.getOption('W', options);    if (wString.length() != 0) {      m_defaultWeight = (new Double(wString)).doubleValue();    }    String rString = Utils.getOption('S', options);    if (rString.length() != 0) {      m_Seed = Integer.parseInt(rString);    }  }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    String[] options = new String [20];    int current = 0;    if(m_Balanced) {      options[current++] = "-L";     }        options[current++] = "-I"; options[current++] = "" + m_numIterations;    options[current++] = "-A"; options[current++] = "" + m_Alpha;    options[current++] = "-B"; options[current++] = "" + m_Beta;    options[current++] = "-H"; options[current++] = "" + m_Threshold;    options[current++] = "-W"; options[current++] = "" + m_defaultWeight;    options[current++] = "-S"; options[current++] = "" + m_Seed;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.enable(Capability.BINARY_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);    // instances    result.setMinimumNumberInstances(0);        return result;  }  /**   * Builds the classifier   *   * @param insts the data to train the classifier with   * @throws Exception if something goes wrong during building   */  public void buildClassifier(Instances insts) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(insts);    // remove instances with missing class    insts = new Instances(insts);    insts.deleteWithMissingClass();        // Filter data    m_Train = new Instances(insts);        m_ReplaceMissingValues = new ReplaceMissingValues();    m_ReplaceMissingValues.setInputFormat(m_Train);    m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);    m_NominalToBinary = new NominalToBinary();    m_NominalToBinary.setInputFormat(m_Train);    m_Train = Filter.useFilter(m_Train, m_NominalToBinary);    /** Randomize training data */    if(m_Seed != -1) {      m_Train.randomize(new Random(m_Seed));    }    /** Make space to store weights */    m_predPosVector = new double[m_Train.numAttributes()];    if(m_Balanced) {      m_predNegVector = new double[m_Train.numAttributes()];    }    /** Initialize the weights to starting values **/    for(int i = 0; i < m_Train.numAttributes(); i++)      m_predPosVector[i] = m_defaultWeight;    if(m_Balanced) {      for(int i = 0; i < m_Train.numAttributes(); i++) {	m_predNegVector[i] = m_defaultWeight;      }    }	    /** Set actual prediction threshold **/    if(m_Threshold<0) {      m_actualThreshold = (double)m_Train.numAttributes()-1;    } else {      m_actualThreshold = m_Threshold;    }    m_Mistakes=0;    /** Compute the weight vectors **/    if(m_Balanced) {      for (int it = 0; it < m_numIterations; it++) {	for (int i = 0; i < m_Train.numInstances(); i++) {	  actualUpdateClassifierBalanced(m_Train.instance(i));	}      }    } else {      for (int it = 0; it < m_numIterations; it++) {	for (int i = 0; i < m_Train.numInstances(); i++) {	  actualUpdateClassifier(m_Train.instance(i));	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -