⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 leastmedsq.java

📁 Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * Returns a string representing the best   * LinearRegression classifier found.   *   * @return String representing the regression   */  public String toString(){    if( m_ls == null){      return "model has not been built";    }    return m_ls.toString();  }  /**   * Builds a weight function removing instances with an   * abnormally high scaled residual   *   * @throws Exception if weight building fails   */  private void buildWeight()throws Exception{    findResiduals();    m_scalefactor = 1.4826 * ( 1 + 5 / (m_Data.numInstances()					- m_Data.numAttributes()))      * Math.sqrt(m_bestMedian);    m_weight = new double[m_Residuals.length];    for (int i = 0; i < m_Residuals.length; i++)      m_weight[i] = ((Math.sqrt(m_Residuals[i])/m_scalefactor < 2.5)?1.0:0.0);  }  /**   * Builds a new LinearRegression without the 'bad' data   * found by buildWeight   *   * @throws if building fails   */  private void buildRLSRegression()throws Exception{    buildWeight();    m_RLSData = new Instances(m_Data);    int x = 0;    int y = 0;    int n = m_RLSData.numInstances();    while(y < n){      if (m_weight[x] == 0){	m_RLSData.delete(y);	n = m_RLSData.numInstances();	y--;      }      x++;      y++;    }    if ( m_RLSData.numInstances() == 0){      System.err.println("rls regression unbuilt");      m_ls = m_currentRegression;    }else{      m_ls = new LinearRegression();      m_ls.setOptions(new String[]{"-S", "1"});      m_ls.buildClassifier(m_RLSData);      m_currentRegression = m_ls;    }  }  /**   * Finds the kth number in an array   *   * @param a an array of numbers   * @param l left pointer   * @param r right pointer   * @param k position of number to be found   */  private static void select( double [] a, int l, int r, int k){    if (r <=l) return;    int i = partition( a, l, r);    if (i > k) select(a, l, i-1, k);    if (i < k) select(a, i+1, r, k);  }  /**   * Partitions an array of numbers such that all numbers   * less than that at index r, between indexes l and r   * will have a smaller index and all numbers greater than   * will have a larger index   *   * @param a an array of numbers   * @param l left pointer   * @param r right pointer   * @return final index of number originally at r   */  private static int partition( double [] a, int l, int r ){    int i = l-1, j = r;    double v = a[r], temp;    while(true){      while(a[++i] < v);      while(v < a[--j]) if(j == l) break;      if(i >= j) break;      temp = a[i];      a[i] = a[j];      a[j] = temp;    }    temp = a[i];    a[i] = a[r];    a[r] = temp;    return i;  }  /**   * Produces a random sample from m_Data   * in m_SubSample   *   * @param data data from which to take sample   * @throws Exception if an error occurs   */  private void selectSubSample(Instances data)throws Exception{    m_SplitFilter = new RemoveRange();    m_SplitFilter.setInvertSelection(true);    m_SubSample = data;    m_SplitFilter.setInputFormat(m_SubSample);    m_SplitFilter.setInstancesIndices(selectIndices(m_SubSample));    m_SubSample = Filter.useFilter(m_SubSample, m_SplitFilter);  }  /**   * Returns a string suitable for passing to RemoveRange consisting   * of m_samplesize indices.   *   * @param data dataset from which to take indicese   * @return string of indices suitable for passing to RemoveRange    */  private String selectIndices(Instances data){    StringBuffer text = new StringBuffer();    for(int i = 0, x = 0; i < m_samplesize; i++){      do{x = (int) (m_random.nextDouble() * data.numInstances());}      while(x==0);      text.append(Integer.toString(x));      if(i < m_samplesize - 1)	text.append(",");      else	text.append("\n");    }    return text.toString();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String sampleSizeTipText() {    return "Set the size of the random samples used to generate the least sqaured "      +"regression functions.";  }  /**   * sets number of samples   *   * @param samplesize value   */  public void setSampleSize(int samplesize){    m_samplesize = samplesize;  }  /**   * gets number of samples   *   * @return value   */  public int getSampleSize(){    return m_samplesize;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String randomSeedTipText() {    return "Set the seed for selecting random subsamples of the training data.";  }  /**   * Set the seed for the random number generator   *   * @param randomseed the seed   */  public void setRandomSeed(long randomseed){    m_randomseed = randomseed;  }  /**   * get the seed for the random number generator   *   * @return the seed value   */  public long getRandomSeed(){    return m_randomseed;  }  /**   * sets  whether or not debugging output shouild be printed   *   * @param debug true if debugging output selected   */  public void setDebug(boolean debug){    m_debug = debug;  }  /**   * Returns whether or not debugging output shouild be printed   *   * @return true if debuging output selected   */  public boolean getDebug(){    return m_debug;  }  /**   * Returns an enumeration of all the available options..   *   * @return an enumeration of all available options.   */  public Enumeration listOptions(){    Vector newVector = new Vector(1);    newVector.addElement(new Option("\tSet sample size\n"				    + "\t(default: 4)\n",				    "S", 4, "-S <sample size>"));    newVector.addElement(new Option("\tSet the seed used to generate samples\n"				    + "\t(default: 0)\n",				    "G", 0, "-G <seed>"));    newVector.addElement(new Option("\tProduce debugging output\n"				    + "\t(default no debugging output)\n",				    "D", 0, "-D"));    return newVector.elements();  }  /**   * Sets the OptionHandler's options using the given list. All options   * will be set (or reset) during this call (i.e. incremental setting   * of options is not possible).   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -S &lt;sample size&gt;   *  Set sample size   *  (default: 4)   * </pre>   *    * <pre> -G &lt;seed&gt;   *  Set the seed used to generate samples   *  (default: 0)   * </pre>   *    * <pre> -D   *  Produce debugging output   *  (default no debugging output)   * </pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String curropt = Utils.getOption('S', options);    if ( curropt.length() != 0){      setSampleSize(Integer.parseInt(curropt));    } else      setSampleSize(4);    curropt = Utils.getOption('G', options);    if ( curropt.length() != 0){      setRandomSeed(Long.parseLong(curropt));    } else {      setRandomSeed(0);    }    setDebug(Utils.getFlag('D', options));  }  /**   * Gets the current option settings for the OptionHandler.   *   * @return the list of current option settings as an array of strings   */  public String[] getOptions(){    String options[] = new String[9];    int current = 0;    options[current++] = "-S";    options[current++] = "" + getSampleSize();    options[current++] = "-G";    options[current++] = "" + getRandomSeed();    if (getDebug()) {      options[current++] = "-D";    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Produces the combination nCr   *   * @param n   * @param r   * @return the combination   * @throws Exception if r is greater than n   */  public static int combinations (int n, int r)throws Exception {    int c = 1, denom = 1, num = 1, i,orig=r;    if (r > n) throw new Exception("r must be less that or equal to n.");    r = Math.min( r , n - r);    for (i = 1 ; i <= r; i++){      num *= n-i+1;      denom *= i;    }    c = num / denom;    if(false)      System.out.println( "n: "+n+" r: "+orig+" num: "+num+			  " denom: "+denom+" c: "+c);    return c;  }  /**   * generate a Linear regression predictor for testing   *   * @param argv options   */  public static void main(String [] argv){    try{      System.out.println(Evaluation.evaluateModel(new LeastMedSq(), argv));    } catch (Exception e) {      System.out.println(e.getMessage());      e.printStackTrace();    }  } // main} // lmr

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -