📄 gaussianprocesses.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * LinearRegression.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.functions;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.IntervalEstimator;import weka.classifiers.functions.supportVector.Kernel;import weka.classifiers.functions.supportVector.PolyKernel;import weka.classifiers.functions.supportVector.RBFKernel;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Statistics;import weka.core.Tag;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.NominalToBinary;import weka.filters.unsupervised.attribute.Normalize;import weka.filters.unsupervised.attribute.ReplaceMissingValues;import weka.filters.unsupervised.attribute.Standardize;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Implements Gaussian Processes for regression without hyperparameter-tuning. For more information see<br/> * <br/> * David J.C. Mackay (1998). Introduction to Gaussian Processes. Dept. of Physics, Cambridge University, UK. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @misc{Mackay1998, * address = {Dept. of Physics, Cambridge University, UK}, * author = {David J.C. Mackay}, * title = {Introduction to Gaussian Processes}, * year = {1998}, * PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * * <pre> -L <double> * Level of Gaussian Noise. (default 0.1)</pre> * * <pre> -N * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre> * * <pre> -K <classname and parameters> * The Kernel to use. * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> * * <pre> * Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel: * </pre> * * <pre> -D * Enables debugging output (if available) to be printed. * (default: off)</pre> * * <pre> -no-checks * Turns off all checks - use with caution! * (default: checks on)</pre> * * <pre> -C <num> * The size of the cache (a prime number). * (default: 250007)</pre> * * <pre> -G <num> * The Gamma parameter. * (default: 0.01)</pre> * <!-- options-end --> * * @author Kurt Driessens (kurtd@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class GaussianProcesses extends Classifier implements OptionHandler, IntervalEstimator, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -8620066949967678545L; /** The filter used to make attributes numeric. */ protected NominalToBinary m_NominalToBinary; /** normalizes the data */ public static final int FILTER_NORMALIZE = 0; /** standardizes the data */ public static final int FILTER_STANDARDIZE = 1; /** no filter */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag [] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter = null; /** Whether to normalize/standardize/neither */ protected int m_filterType = FILTER_NORMALIZE; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_Missing; /** Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a numeric class. */ protected boolean m_checksTurnedOff = false; /** Gaussian Noise Value. */ protected double m_delta = 1.0; /** The class index from the training data */ protected int m_classIndex = -1; /** The parameters of the linear transforamtion realized * by the filter on the class attribute */ protected double m_Alin; protected double m_Blin; /** Kernel to use **/ protected Kernel m_kernel = null; /** The training data. */ protected Instances m_data; /** The training data. */ protected double m_avg_target; /** The covariance matrix. */ protected weka.core.matrix.Matrix m_C; /** The vector of target values. */ protected weka.core.matrix.Matrix m_t; /** whether the kernel is a linear one */ protected boolean m_KernelIsLinear = false; /** * the default constructor */ public GaussianProcesses() { super(); m_kernel = new RBFKernel(); ((RBFKernel) m_kernel).setGamma(1.0); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements Gaussian Processes for regression " + "without hyperparameter-tuning. " + "For more information see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MISC); result.setValue(Field.AUTHOR, "David J.C. Mackay"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Introduction to Gaussian Processes"); result.setValue(Field.ADDRESS, "Dept. of Physics, Cambridge University, UK"); result.setValue(Field.PS, "http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = getKernel().getCapabilities(); result.setOwner(this); // attribute result.enableAllAttributeDependencies(); // with NominalToBinary we can also handle nominal attributes, but only // if the kernel can handle numeric attributes if (result.handles(Capability.NUMERIC_ATTRIBUTES)) result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Method for building the classifier. * * @param insts the set of training instances * @throws Exception if the classifier can't be built successfully */ public void buildClassifier(Instances insts) throws Exception { /* check the set of training instances */ if (!m_checksTurnedOff) { // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); } if (!m_checksTurnedOff) { m_Missing = new ReplaceMissingValues(); m_Missing.setInputFormat(insts); insts = Filter.useFilter(insts, m_Missing); } else { m_Missing = null; } if (getCapabilities().handles(Capability.NUMERIC_ATTRIBUTES)) { boolean onlyNumeric = true; if (!m_checksTurnedOff) { for (int i = 0; i < insts.numAttributes(); i++) { if (i != insts.classIndex()) { if (!insts.attribute(i).isNumeric()) { onlyNumeric = false; break; } } } } if (!onlyNumeric) { m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(insts); insts = Filter.useFilter(insts, m_NominalToBinary); } else { m_NominalToBinary = null; } } else { m_NominalToBinary = null; } m_classIndex = insts.classIndex(); if (m_filterType == FILTER_STANDARDIZE) { m_Filter = new Standardize(); //((Standardize)m_Filter).setIgnoreClass(true); m_Filter.setInputFormat(insts); insts = Filter.useFilter(insts, m_Filter); } else if (m_filterType == FILTER_NORMALIZE) { m_Filter = new Normalize(); //((Normalize)m_Filter).setIgnoreClass(true); m_Filter.setInputFormat(insts); insts = Filter.useFilter(insts, m_Filter); } else { m_Filter = null; } m_data = insts; // determine which linear transformation has been // applied to the class by the filter if (m_Filter != null) { Instance witness = (Instance)insts.instance(0).copy(); witness.setValue(m_classIndex, 0); m_Filter.input(witness); m_Filter.batchFinished(); Instance res = m_Filter.output(); m_Blin = res.value(m_classIndex); witness.setValue(m_classIndex, 1); m_Filter.input(witness); m_Filter.batchFinished(); res = m_Filter.output(); m_Alin = res.value(m_classIndex) - m_Blin; } else { m_Alin = 1.0; m_Blin = 0.0; } // Initialize kernel m_kernel.buildKernel(m_data); m_KernelIsLinear = (m_kernel instanceof PolyKernel) && (((PolyKernel) m_kernel).getExponent() == 1.0); // Build Inverted Covariance Matrix m_C = new weka.core.matrix.Matrix(m_data.numInstances(),m_data.numInstances()); double kv; double sum = 0.0; for (int i = 0; i < m_data.numInstances(); i++) { sum += m_data.instance(i).classValue(); for (int j = 0; j < i; j++) { kv = m_kernel.eval(i,j,m_data.instance(i)); m_C.set(i,j,kv); m_C.set(j,i,kv); } kv = m_kernel.eval(i,i,m_data.instance(i)); m_C.set(i,i,kv+(m_delta*m_delta)); } m_avg_target = sum/m_data.numInstances(); //weka.core.matrix.CholeskyDecomposition cd = new weka.core.matrix.CholeskyDecomposition(m_C); //if (!cd.isSPD()) //throw new Exception("No semi-positive-definite kernel?!?"); weka.core.matrix.LUDecomposition lu = new weka.core.matrix.LUDecomposition(m_C); if (!lu.isNonsingular()) throw new Exception("Singular Matrix?!?"); weka.core.matrix.Matrix iMat = weka.core.matrix.Matrix.identity(m_data.numInstances(),m_data.numInstances()); m_C = lu.solve(iMat); m_t = new weka.core.matrix.Matrix(m_data.numInstances(),1); for (int i = 0; i < m_data.numInstances(); i++) m_t.set(i,0,m_data.instance(i).classValue()-m_avg_target); m_t = m_C.times(m_t); } /** * Classifies a given instance. * * @param inst the instance to be classified * @return the classification * @throws Exception if instance could not be classified * successfully */ public double classifyInstance(Instance inst) throws Exception { // Filter instance if (!m_checksTurnedOff) { m_Missing.input(inst); m_Missing.batchFinished(); inst = m_Missing.output(); } if (m_NominalToBinary != null) { m_NominalToBinary.input(inst); m_NominalToBinary.batchFinished(); inst = m_NominalToBinary.output(); } if (m_Filter != null) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -