📄 multilayerperceptron.java
字号:
*/ private void addNode(NeuralConnection n) { NeuralConnection[] temp1 = new NeuralConnection[m_neuralNodes.length + 1]; for (int noa = 0; noa < m_neuralNodes.length; noa++) { temp1[noa] = m_neuralNodes[noa]; } temp1[temp1.length-1] = n; m_neuralNodes = temp1; } /** * Call this function to remove the passed node from the list. * This will only remove the node if it is in the neuralnodes list. * @param n The neuralConnection to remove. * @return True if removed false if not (because it wasn't there). */ private boolean removeNode(NeuralConnection n) { NeuralConnection[] temp1 = new NeuralConnection[m_neuralNodes.length - 1]; int skip = 0; for (int noa = 0; noa < m_neuralNodes.length; noa++) { if (n == m_neuralNodes[noa]) { skip++; } else if (!((noa - skip) >= temp1.length)) { temp1[noa - skip] = m_neuralNodes[noa]; } else { return false; } } m_neuralNodes = temp1; return true; } /** * This function sets what the m_numeric flag to represent the passed class * it also performs the normalization of the attributes if applicable * and sets up the info to normalize the class. (note that regardless of * the options it will fill an array with the range and base, set to * normalize all attributes and the class to be between -1 and 1) * @param inst the instances. * @return The modified instances. This needs to be done. If the attributes * are normalized then deep copies will be made of all the instances which * will need to be passed back out. */ private Instances setClassType(Instances inst) throws Exception { if (inst != null) { // x bounds double min=Double.POSITIVE_INFINITY; double max=Double.NEGATIVE_INFINITY; double value; m_attributeRanges = new double[inst.numAttributes()]; m_attributeBases = new double[inst.numAttributes()]; for (int noa = 0; noa < inst.numAttributes(); noa++) { min = Double.POSITIVE_INFINITY; max = Double.NEGATIVE_INFINITY; for (int i=0; i < inst.numInstances();i++) { if (!inst.instance(i).isMissing(noa)) { value = inst.instance(i).value(noa); if (value < min) { min = value; } if (value > max) { max = value; } } } m_attributeRanges[noa] = (max - min) / 2; m_attributeBases[noa] = (max + min) / 2; if (noa != inst.classIndex() && m_normalizeAttributes) { for (int i = 0; i < inst.numInstances(); i++) { if (m_attributeRanges[noa] != 0) { inst.instance(i).setValue(noa, (inst.instance(i).value(noa) - m_attributeBases[noa]) / m_attributeRanges[noa]); } else { inst.instance(i).setValue(noa, inst.instance(i).value(noa) - m_attributeBases[noa]); } } } } if (inst.classAttribute().isNumeric()) { m_numeric = true; } else { m_numeric = false; } } return inst; } /** * A function used to stop the code that called buildclassifier * from continuing on before the user has finished the decision tree. * @param tf True to stop the thread, False to release the thread that is * waiting there (if one). */ public synchronized void blocker(boolean tf) { if (tf) { try { wait(); } catch(InterruptedException e) { } } else { notifyAll(); } } /** * Call this function to update the control panel for the gui. */ private void updateDisplay() { if (m_gui) { m_controlPanel.m_errorLabel.repaint(); m_controlPanel.m_epochsLabel.repaint(); } } /** * this will reset all the nodes in the network. */ private void resetNetwork() { for (int noc = 0; noc < m_numClasses; noc++) { m_outputs[noc].reset(); } } /** * This will cause the output values of all the nodes to be calculated. * Note that the m_currentInstance is used to calculate these values. */ private void calculateOutputs() { for (int noc = 0; noc < m_numClasses; noc++) { //get the values. m_outputs[noc].outputValue(true); } } /** * This will cause the error values to be calculated for all nodes. * Note that the m_currentInstance is used to calculate these values. * Also the output values should have been calculated first. * @return The squared error. */ private double calculateErrors() throws Exception { double ret = 0, temp = 0; for (int noc = 0; noc < m_numAttributes; noc++) { //get the errors. m_inputs[noc].errorValue(true); } for (int noc = 0; noc < m_numClasses; noc++) { temp = m_outputs[noc].errorValue(false); ret += temp * temp; } return ret; } /** * This will cause the weight values to be updated based on the learning * rate, momentum and the errors that have been calculated for each node. * @param l The learning rate to update with. * @param m The momentum to update with. */ private void updateNetworkWeights(double l, double m) { for (int noc = 0; noc < m_numClasses; noc++) { //update weights m_outputs[noc].updateWeights(l, m); } } /** * This creates the required input units. */ private void setupInputs() throws Exception { m_inputs = new NeuralEnd[m_numAttributes]; int now = 0; for (int noa = 0; noa < m_numAttributes+1; noa++) { if (m_instances.classIndex() != noa) { m_inputs[noa - now] = new NeuralEnd(m_instances.attribute(noa).name()); m_inputs[noa - now].setX(.1); m_inputs[noa - now].setY((noa - now + 1.0) / (m_numAttributes + 1)); m_inputs[noa - now].setLink(true, noa); } else { now = 1; } } } /** * This creates the required output units. */ private void setupOutputs() throws Exception { m_outputs = new NeuralEnd[m_numClasses]; for (int noa = 0; noa < m_numClasses; noa++) { if (m_numeric) { m_outputs[noa] = new NeuralEnd(m_instances.classAttribute().name()); } else { m_outputs[noa]= new NeuralEnd(m_instances.classAttribute().value(noa)); } m_outputs[noa].setX(.9); m_outputs[noa].setY((noa + 1.0) / (m_numClasses + 1)); m_outputs[noa].setLink(false, noa); NeuralNode temp = new NeuralNode(String.valueOf(m_nextId), m_random, m_sigmoidUnit); m_nextId++; temp.setX(.75); temp.setY((noa + 1.0) / (m_numClasses + 1)); addNode(temp); NeuralConnection.connect(temp, m_outputs[noa]); } } /** * Call this function to automatically generate the hidden units */ private void setupHiddenLayer() { StringTokenizer tok = new StringTokenizer(m_hiddenLayers, ","); int val = 0; //num of nodes in a layer int prev = 0; //used to remember the previous layer int num = tok.countTokens(); //number of layers String c; for (int noa = 0; noa < num; noa++) { //note that I am using the Double to get the value rather than the //Integer class, because for some reason the Double implementation can //handle leading white space and the integer version can't!?! c = tok.nextToken().trim(); if (c.equals("a")) { val = (m_numAttributes + m_numClasses) / 2; } else if (c.equals("i")) { val = m_numAttributes; } else if (c.equals("o")) { val = m_numClasses; } else if (c.equals("t")) { val = m_numAttributes + m_numClasses; } else { val = Double.valueOf(c).intValue(); } for (int nob = 0; nob < val; nob++) { NeuralNode temp = new NeuralNode(String.valueOf(m_nextId), m_random, m_sigmoidUnit); m_nextId++; temp.setX(.5 / (num) * noa + .25); temp.setY((nob + 1.0) / (val + 1)); addNode(temp); if (noa > 0) { //then do connections for (int noc = m_neuralNodes.length - nob - 1 - prev; noc < m_neuralNodes.length - nob - 1; noc++) { NeuralConnection.connect(m_neuralNodes[noc], temp); } } } prev = val; } tok = new StringTokenizer(m_hiddenLayers, ","); c = tok.nextToken(); if (c.equals("a")) { val = (m_numAttributes + m_numClasses) / 2; } else if (c.equals("i")) { val = m_numAttributes; } else if (c.equals("o")) { val = m_numClasses; } else if (c.equals("t")) { val = m_numAttributes + m_numClasses; } else { val = Double.valueOf(c).intValue(); } if (val == 0) { for (int noa = 0; noa < m_numAttributes; noa++) { for (int nob = 0; nob < m_numClasses; nob++) { NeuralConnection.connect(m_inputs[noa], m_neuralNodes[nob]); } } } else { for (int noa = 0; noa < m_numAttributes; noa++) { for (int nob = m_numClasses; nob < m_numClasses + val; nob++) { NeuralConnection.connect(m_inputs[noa], m_neuralNodes[nob]); } } for (int noa = m_neuralNodes.length - prev; noa < m_neuralNodes.length; noa++) { for (int nob = 0; nob < m_numClasses; nob++) { NeuralConnection.connect(m_neuralNodes[noa], m_neuralNodes[nob]); } } } } /** * This will go through all the nodes and check if they are connected * to a pure output unit. If so they will be set to be linear units. * If not they will be set to be sigmoid units. */ private void setEndsToLinear() { for (int noa = 0; noa < m_neuralNodes.length; noa++) { if ((m_neuralNodes[noa].getType() & NeuralConnection.OUTPUT) == NeuralConnection.OUTPUT) { ((NeuralNode)m_neuralNodes[noa]).setMethod(m_linearUnit); } else { ((NeuralNode)m_neuralNodes[noa]).setMethod(m_sigmoidUnit); } } } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Call this function to build and train a neural network for the training * data provided. * @param i The training data. * @throws Throws exception if can't build classification properly. */ public void buildClassifier(Instances i) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(i); // remove instances with missing class i = new Instances(i); i.deleteWithMissingClass(); m_epoch = 0; m_error = 0; m_instances = null; m_currentInstance = null; m_controlPanel = null; m_nodePanel = null; m_outputs = new NeuralEnd[0]; m_inputs = new NeuralEnd[0]; m_numAttributes = 0; m_numClasses = 0; m_neuralNodes = new NeuralConnection[0]; m_selected = new FastVector(4); m_graphers = new FastVector(2); m_nextId = 0; m_stopIt = true; m_stopped = true; m_accepted = false; m_instances = new Instances(i); m_random = new Random(m_randomSeed); m_instances.randomize(m_random); if (m_useNomToBin) { m_nominalToBinaryFilter = new NominalToBinary(); m_nominalToBinaryFilter.setInputFormat(m_instances); m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter); } m_numAttributes = m_instances.numAttributes() - 1; m_numClasses = m_instances.numClasses(); setClassType(m_instances); //this sets up the validation set. Instances valSet = null; //numinval is needed later int numInVal = (int)(m_valSize / 100.0 * m_instances.numInstances()); if (m_valSize > 0) { if (numInVal == 0) { numInVal = 1; } valSet = new Instances(m_instances, 0, numInVal); } /////////// setupInputs(); setupOutputs(); if (m_autoBuild) { setupHiddenLayer(); } ///////////////////////////// //this sets up the gui for usage if (m_gui) { m_win = new JFrame(); m_win.addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { boolean k = m_stopIt; m_stopIt = true; int well =JOptionPane.showConfirmDialog(m_win, "Are You Sure...\n" + "Click Yes To Accept" + " The Neural Network" + "\n Click No To Return", "Accept Neural Network",
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -