📄 error_tropospheric_hopfield.m
字号:
%This Function approximate Troposspheric Group Delay Base on
%application . edited by B. Parkinson,J. Spilker, P.Enge, AIAA,1996
%CopyRight By Moein Mehrtash
%**************************************************************************
% Written by Moein Mehrtash, Concordia University, 3/21/2008 *
% Email: moeinmehrtash@yahoo.com *
%**************************************************************************
% Reference:"GPS Theory and application",edited by B.Parkinson,J.Spilker, *
%**************************************************************************
%Input
% T_amb:'C =>At reciever antenna location
% P_amb:hPa =>At reciever antenna location
% P_vap:hPa =>Water vapore pressure at reciever antenna location
% Pos_Rcv : XYZ position of reciever (Meter)
% Pos_SV : XYZ matrix position of GPS satellites (Meter)
%Output:
% Delta_R_Trop: m =>Tropospheric Error Correction
%**************************************************************************
function Delta_R_Trop=Error_Tropospheric_Hopfield(T_amb,P_amb,P_vap,Pos_Rcv,Pos_SV)
S=size(Pos_SV);
m=S(1);n=S(2);
for i=1:m
[E,A0]=Calc_Azimuth_Elevation(Pos_Rcv,Pos_SV(i,:));
El(i)=E; %Elevation Rad
A(i)=A0; %Azimoth Rad
end
%Zenith Hydrostatic Delay
Kd=1.55208*10^(-4)*P_amb*(40136+148.72*T_amb)/(T_amb+273.16);
%Zenith Wet Delay
Kw=-.282*P_vap/(T_amb+273.16)+8307.2*P_vap/(T_amb+273.16)^2;
for i=1:m
Denom1(i)=sin(sqrt(El(i)^2+1.904*10^-3));
Denom2(i)=sin(sqrt(El(i)^2+.6854*10^-3));
%Troposhpheric Delay Correctoion
Delta_R_Trop(i)=Kd/Denom1(i)+Kw/Denom2(i); % Meter
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -