📄 circle_mesh.m
字号:
% Advanced Engineering Electromagnetic
% Pouya Dastmalchi 8600844
% Triangular mesh plot for a Circule
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xx,yy,S] = circle_mesh(a,dp,dr)
% close all
% clear all
% clc
% c = 3e8;
% f = 1e9;
% lambda = c/f;
% a = lambda/4;
% a=1;
% dp=pi/6;
% dr=a/3;
z=1;
X(1)=0;
Y(1)=0;
for k=1:(a/dr)
Np(k)=2*k-1;
end
N=(sum(Np(1:end)))*2*pi/dp;
for h=1:2*pi/dp
T(h,1,1)=1;
end
for n=1:2*pi/dp
for m=2:a/dr+1
for k=1:m
z=z+1;
x(n,m,k)=(m-1)*dr*cos(((n-1)*dp)+((k-1)*dp/(m-1)));
y(n,m,k)=(m-1)*dr*sin(((n-1)*dp)+((k-1)*dp/(m-1)));
X(z)=x(n,m,k);
Y(z)=y(n,m,k);
T(n,m,k)=z;
end
end
end
for n=1:2*pi/dp
for m=1:(a/dr)
for k=1:m
l=m*(m-1)/2+k+(n-1)*sum(Np(1:end));
tri(l,1)=T(n,m+1,k);
tri(l,2)=T(n,m+1,k+1);
tri(l,3)=T(n,m,k);
end
end
for m=1:(a/dr)-1
for k=1:m
l=l+1;
tri(l,1)=T(n,m+1,k);
tri(l,2)=T(n,m+1,k+1);
tri(l,3)=T(n,m+2,k+1);
end
end
end
for k=1:N
xx(k)=(X(tri(k,1))+X(tri(k,2))+X(tri(k,3)))/3;
yy(k)=(Y(tri(k,1))+Y(tri(k,2))+Y(tri(k,3)))/3;
L1 = sqrt((X(tri(k,1))-X(tri(k,2)))^2+(Y(tri(k,1))-Y(tri(k,2)))^2);
L2 = sqrt((X(tri(k,3))-X(tri(k,2)))^2+(Y(tri(k,3))-Y(tri(k,2)))^2);
L3 = sqrt((X(tri(k,3))-X(tri(k,1)))^2+(Y(tri(k,3))-Y(tri(k,1)))^2);
P = (L1+L2+L3)/2;
S(k) = sqrt(P*(P-L1)*(P-L2)*(P-L3));
% O(k,1)=xx(k);
% O(k,2)=yy(k);
end
% Z=zeros(1,length(X));
% figure(1)
% trimesh(tri,X,Y,Z)
% figure(2)
% plot(X,Y,'k.')
% hold on
% triplot(tri,X,Y,'b')
% hold on
% plot(xx,yy,'r.')
% axis equal
%___________________________________________________________________
% c = 3e8;
% f = 1e9;
% lambda = c/f;
% w = 2*pi*f;
% a = lambda;
% phi0 = pi/3;
% G = 1.781072418;
% I0 = 1;
% eps0 = (1/(36*pi))*10^(-9);
% eps = 3;
% eps1 = 3*eps0;
% neta = 377;
% B = 2*pi/lambda;
% u = 4*pi*10^(-7);
% r = 4*lambda;
% phi = 0:0.05:2*pi;
% X = r*cos(phi);
% Y = r*sin(phi);
% La = length(xx);
%
% for q=1:La
% for p=1:La
% xm = xx(p);
% ym = yy(p);
% xn = xx(q);
% yn = yy(q);
% if p~=q
% A(p,q) = (j*pi*B*a/2)*(eps-1)*besselj(1,B*a)*besselh(0,2,B*sqrt((xm-xn)^2+(ym-yn)^2));
% elseif p==q
% A(p,q) = 1+(eps-1)*(j/2)*(pi*B*a*besselh(1,2,B*a)-2*j);
% end
% end
% B1(q,1) = exp(j*B*(xn*cos(phi0)+yn*sin(phi0)));
% %
% end
% %
% ALFA = [];
% ALFA = A\B1;
% J = j*w*(eps-eps0)*ALFA;
%
% for tt = 1:length(phi)
% for gg = 1:La
% R = sqrt((X(tt)-xx(gg))^2+(Y(tt)-yy(gg))^2);
% Ez(gg) = -J(gg)*a^2*(w*u/4)*besselh(0,2,B*R);
% end
% EZ(tt) = sum(Ez(1:end));
% end
% figure(2)
% RCS =2*pi*r*(abs(EZ).^2)/lambda;
% hold on
% plot(phi*180/pi,RCS,'-')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -