📄 limits
字号:
// The template and inlines for the -*- C++ -*- numeric_limits classes.
// Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file limits
* This is a Standard C++ Library header.
*/
// Note: this is not a conforming implementation.
// Written by Gabriel Dos Reis <gdr@codesourcery.com>
//
// ISO 14882:1998
// 18.2.1
//
#ifndef _GLIBCXX_NUMERIC_LIMITS
#define _GLIBCXX_NUMERIC_LIMITS 1
#define __glibcxx_signed(T) ((T)(-1) < 0)
// You should not need to define any macros below this point.
namespace std
{
/**
* @brief Describes the rounding style for floating-point types.
*
* This is used in the std::numeric_limits class.
*/
enum float_round_style
{
round_indeterminate = -1, ///< Self-explanatory.
round_toward_zero = 0, ///< Self-explanatory.
round_to_nearest = 1, ///< To the nearest representable value.
round_toward_infinity = 2, ///< Self-explanatory.
round_toward_neg_infinity = 3 ///< Self-explanatory.
};
/**
* @brief Describes the denormalization for floating-point types.
*
* These values represent the presence or absence of a variable number
* of exponent bits. This type is used in the std::numeric_limits class.
*/
enum float_denorm_style
{
/// Indeterminate at compile time whether denormalized values are allowed.
denorm_indeterminate = -1,
/// The type does not allow denormalized values.
denorm_absent = 0,
/// The type allows denormalized values.
denorm_present = 1
};
/**
* @brief Part of std::numeric_limits.
*
* The @c static @c const members are usable as integral constant
* expressions.
*
* @note This is a seperate class for purposes of efficiency; you
* should only access these members as part of an instantiation
* of the std::numeric_limits class.
*/
struct __numeric_limits_base
{
/** This will be true for all fundamental types (which have
specializations), and false for everything else. */
static const bool is_specialized = false;
/** The number of @c radix digits that be represented without change: for
integer types, the number of non-sign bits in the mantissa; for
floating types, the number of @c radix digits in the mantissa. */
static const int digits = 0;
/** The number of base 10 digits that can be represented without change. */
static const int digits10 = 0;
/** True if the type is signed. */
static const bool is_signed = false;
/** True if the type is integer.
* @if maint
* Is this supposed to be "if the type is integral"?
* @endif
*/
static const bool is_integer = false;
/** True if the type uses an exact representation. "All integer types are
exact, but not all exact types are integer. For example, rational and
fixed-exponent representations are exact but not integer."
[18.2.1.2]/15 */
static const bool is_exact = false;
/** For integer types, specifies the base of the representation. For
floating types, specifies the base of the exponent representation. */
static const int radix = 0;
/** The minimum negative integer such that @c radix raised to the power of
(one less than that integer) is a normalized floating point number. */
static const int min_exponent = 0;
/** The minimum negative integer such that 10 raised to that power is in
the range of normalized floating point numbers. */
static const int min_exponent10 = 0;
/** The maximum positive integer such that @c radix raised to the power of
(one less than that integer) is a representable finite floating point
number. */
static const int max_exponent = 0;
/** The maximum positive integer such that 10 raised to that power is in
the range of representable finite floating point numbers. */
static const int max_exponent10 = 0;
/** True if the type has a representation for positive infinity. */
static const bool has_infinity = false;
/** True if the type has a representation for a quiet (non-signaling)
"Not a Number." */
static const bool has_quiet_NaN = false;
/** True if the type has a representation for a signaling
"Not a Number." */
static const bool has_signaling_NaN = false;
/** See std::float_denorm_style for more information. */
static const float_denorm_style has_denorm = denorm_absent;
/** "True if loss of accuracy is detected as a denormalization loss,
rather than as an inexact result." [18.2.1.2]/42 */
static const bool has_denorm_loss = false;
/** True if-and-only-if the type adheres to the IEC 559 standard, also
known as IEEE 754. (Only makes sense for floating point types.) */
static const bool is_iec559 = false;
/** "True if the set of values representable by the type is finite. All
built-in types are bounded, this member would be false for arbitrary
precision types." [18.2.1.2]/54 */
static const bool is_bounded = false;
/** True if the type is @e modulo, that is, if it is possible to add two
positive numbers and have a result that wraps around to a third number
that is less. Typically false for floating types, true for unsigned
integers, and true for signed integers. */
static const bool is_modulo = false;
/** True if trapping is implemented for this type. */
static const bool traps = false;
/** True if tinyness is detected before rounding. (see IEC 559) */
static const bool tinyness_before = false;
/** See std::float_round_style for more information. This is only
meaningful for floating types; integer types will all be
round_toward_zero. */
static const float_round_style round_style = round_toward_zero;
};
/**
* @brief Properties of fundamental types.
*
* This class allows a program to obtain information about the
* representation of a fundamental type on a given platform. For
* non-fundamental types, the functions will return 0 and the data
* members will all be @c false.
*
* @if maint
* _GLIBCXX_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are
* noted, but not incorporated in this documented (yet).
* @endif
*/
template<typename _Tp>
struct numeric_limits : public __numeric_limits_base
{
/** The minimum finite value, or for floating types with
denormalization, the minimum positive normalized value. */
static _Tp min() throw() { return static_cast<_Tp>(0); }
/** The maximum finite value. */
static _Tp max() throw() { return static_cast<_Tp>(0); }
/** The @e machine @e epsilon: the difference between 1 and the least
value greater than 1 that is representable. */
static _Tp epsilon() throw() { return static_cast<_Tp>(0); }
/** The maximum rounding error measurement (see LIA-1). */
static _Tp round_error() throw() { return static_cast<_Tp>(0); }
/** The representation of positive infinity, if @c has_infinity. */
static _Tp infinity() throw() { return static_cast<_Tp>(0); }
/** The representation of a quiet "Not a Number," if @c has_quiet_NaN. */
static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); }
/** The representation of a signaling "Not a Number," if
@c has_signaling_NaN. */
static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); }
/** The minimum positive denormalized value. For types where
@c has_denorm is false, this is the minimum positive normalized
value. */
static _Tp denorm_min() throw() { return static_cast<_Tp>(0); }
};
// Now there follow 15 explicit specializations. Yes, 15. Make sure
// you get the count right.
/// numeric_limits<bool> specialization.
template<>
struct numeric_limits<bool>
{
static const bool is_specialized = true;
static bool min() throw()
{ return false; }
static bool max() throw()
{ return true; }
static const int digits = 1;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static bool epsilon() throw()
{ return false; }
static bool round_error() throw()
{ return false; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static bool infinity() throw()
{ return false; }
static bool quiet_NaN() throw()
{ return false; }
static bool signaling_NaN() throw()
{ return false; }
static bool denorm_min() throw()
{ return false; }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
};
/// numeric_limits<char> specialization.
template<>
struct numeric_limits<char>
{
static const bool is_specialized = true;
static char min() throw()
{ return CHAR_MIN; }
static char max() throw()
{ return CHAR_MAX; }
static const bool is_signed = __glibcxx_signed (char);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static char epsilon() throw()
{ return 0; }
static char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static char infinity() throw()
{ return char(); }
static char quiet_NaN() throw()
{ return char(); }
static char signaling_NaN() throw()
{ return char(); }
static char denorm_min() throw()
{ return static_cast<char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
};
/// numeric_limits<signed char> specialization.
template<>
struct numeric_limits<signed char>
{
static const bool is_specialized = true;
static signed char min() throw()
{ return SCHAR_MIN; }
static signed char max() throw()
{ return SCHAR_MAX; }
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static signed char epsilon() throw()
{ return 0; }
static signed char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static signed char infinity() throw()
{ return static_cast<signed char>(0); }
static signed char quiet_NaN() throw()
{ return static_cast<signed char>(0); }
static signed char signaling_NaN() throw()
{ return static_cast<signed char>(0); }
static signed char denorm_min() throw()
{ return static_cast<signed char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
};
/// numeric_limits<unsigned char> specialization.
template<>
struct numeric_limits<unsigned char>
{
static const bool is_specialized = true;
static unsigned char min() throw()
{ return 0; }
static unsigned char max() throw()
{ return UCHAR_MAX; }
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned char epsilon() throw()
{ return 0; }
static unsigned char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned char infinity() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char quiet_NaN() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char signaling_NaN() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char denorm_min() throw()
{ return static_cast<unsigned char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
};
/// numeric_limits<wchar_t> specialization.
template<>
struct numeric_limits<wchar_t>
{
static const bool is_specialized = true;
static wchar_t min() throw()
{ return WCHAR_MIN; }
static wchar_t max() throw()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -