📄 sbrqmf.c
字号:
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
uBuf[0] = u64lo.r.hi32;
uBuf[32] = u64hi.r.hi32;
uBuf++;
dOff--;
}
}
#endif
/**************************************************************************************
* Function: QMFAnalysis
*
* Description: 32-subband analysis QMF (4.6.18.4.1)
*
* Inputs: 32 consecutive samples of decoded 32-bit PCM, format = Q(fBitsIn)
* delay buffer of size 32*10 = 320 PCM samples
* number of fraction bits in input PCM
* index for delay ring buffer (range = [0, 9])
* number of subbands to calculate (range = [0, 32])
*
* Outputs: qmfaBands complex subband samples, format = Q(FBITS_OUT_QMFA)
* updated delay buffer
* updated delay index
*
* Return: guard bit mask
*
* Notes: output stored as RE{X0}, IM{X0}, RE{X1}, IM{X1}, ... RE{X31}, IM{X31}
* output stored in int buffer of size 64*2 = 128
* (zero-filled from XBuf[2*qmfaBands] to XBuf[127])
**************************************************************************************/
int QMFAnalysis(int *inbuf, int *delay, int *XBuf, int fBitsIn, int *delayIdx, int qmfaBands)
{
int n, y, shift, gbMask;
int *delayPtr, *uBuf, *tBuf;
/* use XBuf[128] as temp buffer for reordering */
uBuf = XBuf; /* first 64 samples */
tBuf = XBuf + 64; /* second 64 samples */
/* overwrite oldest PCM with new PCM
* delay[n] has 1 GB after shifting (either << or >>)
*/
delayPtr = delay + (*delayIdx * 32);
if (fBitsIn > FBITS_IN_QMFA) {
shift = MIN(fBitsIn - FBITS_IN_QMFA, 31);
for (n = 32; n != 0; n--) {
y = (*inbuf) >> shift;
inbuf++;
*delayPtr++ = y;
}
} else {
shift = MIN(FBITS_IN_QMFA - fBitsIn, 30);
for (n = 32; n != 0; n--) {
y = *inbuf++;
CLIP_2N_SHIFT30(y, shift);
*delayPtr++ = y;
}
}
QMFAnalysisConv((int *)cTabA, delay, *delayIdx, uBuf);
/* uBuf has at least 2 GB right now (1 from clipping to Q(FBITS_IN_QMFA), one from
* the scaling by cTab (MULSHIFT32(*delayPtr--, *cPtr++), with net gain of < 1.0)
* TODO - fuse with QMFAnalysisConv to avoid separate reordering
*/
tBuf[2*0 + 0] = uBuf[0];
tBuf[2*0 + 1] = uBuf[1];
for (n = 1; n < 31; n++) {
tBuf[2*n + 0] = -uBuf[64-n];
tBuf[2*n + 1] = uBuf[n+1];
}
tBuf[2*31 + 1] = uBuf[32];
tBuf[2*31 + 0] = -uBuf[33];
/* fast in-place DCT-IV - only need 2*qmfaBands output samples */
PreMultiply64(tBuf); /* 2 GB in, 3 GB out */
FFT32C(tBuf); /* 3 GB in, 1 GB out */
PostMultiply64(tBuf, qmfaBands*2); /* 1 GB in, 2 GB out */
/* TODO - roll into PostMultiply (if enough registers) */
gbMask = 0;
for (n = 0; n < qmfaBands; n++) {
XBuf[2*n+0] = tBuf[ n + 0]; /* implicit scaling of 2 in our output Q format */
gbMask |= FASTABS(XBuf[2*n+0]);
XBuf[2*n+1] = -tBuf[63 - n];
gbMask |= FASTABS(XBuf[2*n+1]);
}
/* fill top section with zeros for HF generation */
for ( ; n < 64; n++) {
XBuf[2*n+0] = 0;
XBuf[2*n+1] = 0;
}
*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
/* minimum of 2 GB in output */
return gbMask;
}
/* lose FBITS_LOST_DCT4_64 in DCT4, gain 6 for implicit scaling by 1/64, lose 1 for cTab multiply (Q31) */
#define FBITS_OUT_QMFS (FBITS_IN_QMFS - FBITS_LOST_DCT4_64 + 6 - 1)
#define RND_VAL (1 << (FBITS_OUT_QMFS-1))
/**************************************************************************************
* Function: QMFSynthesisConv
*
* Description: final convolution kernel for synthesis QMF
*
* Inputs: pointer to coefficient table, reordered for sequential access
* delay buffer of size 64*10 = 640 complex samples (1280 ints)
* index for delay ring buffer (range = [0, 9])
* number of QMF subbands to process (range = [0, 64])
* number of channels
*
* Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
*
* Return: none
*
* Notes: this is carefully written to be efficient on ARM
* use the assembly code version in sbrqmfsk.s when building for ARM!
**************************************************************************************/
#if (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
#ifdef __cplusplus
extern "C"
#endif
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans);
#else
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans)
{
int k, dOff0, dOff1;
U64 sum64;
dOff0 = (dIdx)*128;
dOff1 = dOff0 - 1;
if (dOff1 < 0)
dOff1 += 1280;
/* scaling note: total gain of coefs (cPtr[0]-cPtr[9] for any k) is < 2.0, so 1 GB in delay values is adequate */
for (k = 0; k <= 63; k++) {
sum64.w64 = 0;
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
dOff0++;
dOff1--;
*outbuf = CLIPTOSHORT((sum64.r.hi32 + RND_VAL) >> FBITS_OUT_QMFS);
outbuf += nChans;
}
}
#endif
/**************************************************************************************
* Function: QMFSynthesis
*
* Description: 64-subband synthesis QMF (4.6.18.4.2)
*
* Inputs: 64 consecutive complex subband QMF samples, format = Q(FBITS_IN_QMFS)
* delay buffer of size 64*10 = 640 complex samples (1280 ints)
* index for delay ring buffer (range = [0, 9])
* number of QMF subbands to process (range = [0, 64])
* number of channels
*
* Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
* updated delay buffer
* updated delay index
*
* Return: none
*
* Notes: assumes MIN_GBITS_IN_QMFS guard bits in input, either from
* QMFAnalysis (if upsampling only) or from MapHF (if SBR on)
**************************************************************************************/
void QMFSynthesis(int *inbuf, int *delay, int *delayIdx, int qmfsBands, short *outbuf, int nChans)
{
int n, a0, a1, b0, b1, dOff0, dOff1, dIdx;
int *tBufLo, *tBufHi;
dIdx = *delayIdx;
tBufLo = delay + dIdx*128 + 0;
tBufHi = delay + dIdx*128 + 127;
/* reorder inputs to DCT-IV, only use first qmfsBands (complex) samples
* TODO - fuse with PreMultiply64 to avoid separate reordering steps
*/
for (n = 0; n < qmfsBands >> 1; n++) {
a0 = *inbuf++;
b0 = *inbuf++;
a1 = *inbuf++;
b1 = *inbuf++;
*tBufLo++ = a0;
*tBufLo++ = a1;
*tBufHi-- = b0;
*tBufHi-- = b1;
}
if (qmfsBands & 0x01) {
a0 = *inbuf++;
b0 = *inbuf++;
*tBufLo++ = a0;
*tBufHi-- = b0;
*tBufLo++ = 0;
*tBufHi-- = 0;
n++;
}
for ( ; n < 32; n++) {
*tBufLo++ = 0;
*tBufHi-- = 0;
*tBufLo++ = 0;
*tBufHi-- = 0;
}
tBufLo = delay + dIdx*128 + 0;
tBufHi = delay + dIdx*128 + 64;
/* 2 GB in, 3 GB out */
PreMultiply64(tBufLo);
PreMultiply64(tBufHi);
/* 3 GB in, 1 GB out */
FFT32C(tBufLo);
FFT32C(tBufHi);
/* 1 GB in, 2 GB out */
PostMultiply64(tBufLo, 64);
PostMultiply64(tBufHi, 64);
/* could fuse with PostMultiply64 to avoid separate pass */
dOff0 = dIdx*128;
dOff1 = dIdx*128 + 64;
for (n = 32; n != 0; n--) {
a0 = (*tBufLo++);
a1 = (*tBufLo++);
b0 = (*tBufHi++);
b1 = -(*tBufHi++);
delay[dOff0++] = (b0 - a0);
delay[dOff0++] = (b1 - a1);
delay[dOff1++] = (b0 + a0);
delay[dOff1++] = (b1 + a1);
}
QMFSynthesisConv((int *)cTabS, delay, dIdx, outbuf, nChans);
*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -