⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sbrqmf.c

📁 从FFMPEG转换而来的H264解码程序,VC下编译..
💻 C
📖 第 1 页 / 共 2 页
字号:
		u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}
		u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]);	dOff -= 32; if (dOff < 0) {dOff += 320;}

		uBuf[0]  = u64lo.r.hi32;
		uBuf[32] = u64hi.r.hi32;
		uBuf++;
		dOff--;
	}
}
#endif

/**************************************************************************************
 * Function:    QMFAnalysis
 *
 * Description: 32-subband analysis QMF (4.6.18.4.1)
 *
 * Inputs:      32 consecutive samples of decoded 32-bit PCM, format = Q(fBitsIn)
 *              delay buffer of size 32*10 = 320 PCM samples
 *              number of fraction bits in input PCM
 *              index for delay ring buffer (range = [0, 9])
 *              number of subbands to calculate (range = [0, 32])
 *
 * Outputs:     qmfaBands complex subband samples, format = Q(FBITS_OUT_QMFA)
 *              updated delay buffer
 *              updated delay index
 *
 * Return:      guard bit mask
 *
 * Notes:       output stored as RE{X0}, IM{X0}, RE{X1}, IM{X1}, ... RE{X31}, IM{X31}
 *              output stored in int buffer of size 64*2 = 128
 *                (zero-filled from XBuf[2*qmfaBands] to XBuf[127])
 **************************************************************************************/
int QMFAnalysis(int *inbuf, int *delay, int *XBuf, int fBitsIn, int *delayIdx, int qmfaBands)
{
	int n, y, shift, gbMask;
	int *delayPtr, *uBuf, *tBuf;

	/* use XBuf[128] as temp buffer for reordering */
	uBuf = XBuf;		/* first 64 samples */
	tBuf = XBuf + 64;	/* second 64 samples */

	/* overwrite oldest PCM with new PCM
	 * delay[n] has 1 GB after shifting (either << or >>)
	 */
	delayPtr = delay + (*delayIdx * 32);
	if (fBitsIn > FBITS_IN_QMFA) {
		shift = MIN(fBitsIn - FBITS_IN_QMFA, 31);
		for (n = 32; n != 0; n--) {
			y = (*inbuf) >> shift;
			inbuf++;
			*delayPtr++ = y;
		}
	} else {
		shift = MIN(FBITS_IN_QMFA - fBitsIn, 30);
		for (n = 32; n != 0; n--) {
			y = *inbuf++;
			CLIP_2N_SHIFT30(y, shift);
			*delayPtr++ = y;
		}
	}

	QMFAnalysisConv((int *)cTabA, delay, *delayIdx, uBuf);

	/* uBuf has at least 2 GB right now (1 from clipping to Q(FBITS_IN_QMFA), one from
	 *   the scaling by cTab (MULSHIFT32(*delayPtr--, *cPtr++), with net gain of < 1.0)
	 * TODO - fuse with QMFAnalysisConv to avoid separate reordering
	 */
    tBuf[2*0 + 0] = uBuf[0];
    tBuf[2*0 + 1] = uBuf[1];
    for (n = 1; n < 31; n++) {
        tBuf[2*n + 0] = -uBuf[64-n];
        tBuf[2*n + 1] =  uBuf[n+1];
    }
    tBuf[2*31 + 1] =  uBuf[32];
    tBuf[2*31 + 0] = -uBuf[33];

	/* fast in-place DCT-IV - only need 2*qmfaBands output samples */
	PreMultiply64(tBuf);	/* 2 GB in, 3 GB out */
	FFT32C(tBuf);			/* 3 GB in, 1 GB out */
	PostMultiply64(tBuf, qmfaBands*2);	/* 1 GB in, 2 GB out */

	/* TODO - roll into PostMultiply (if enough registers) */
	gbMask = 0;
	for (n = 0; n < qmfaBands; n++) {
		XBuf[2*n+0] =  tBuf[ n + 0];	/* implicit scaling of 2 in our output Q format */
		gbMask |= FASTABS(XBuf[2*n+0]);
		XBuf[2*n+1] = -tBuf[63 - n];
		gbMask |= FASTABS(XBuf[2*n+1]);
	}

	/* fill top section with zeros for HF generation */
	for (    ; n < 64; n++) {
		XBuf[2*n+0] = 0;
		XBuf[2*n+1] = 0;
	}

	*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);

	/* minimum of 2 GB in output */
	return gbMask;
}

/* lose FBITS_LOST_DCT4_64 in DCT4, gain 6 for implicit scaling by 1/64, lose 1 for cTab multiply (Q31) */
#define FBITS_OUT_QMFS	(FBITS_IN_QMFS - FBITS_LOST_DCT4_64 + 6 - 1)
#define RND_VAL			(1 << (FBITS_OUT_QMFS-1))

/**************************************************************************************
 * Function:    QMFSynthesisConv
 *
 * Description: final convolution kernel for synthesis QMF
 *
 * Inputs:      pointer to coefficient table, reordered for sequential access
 *              delay buffer of size 64*10 = 640 complex samples (1280 ints)
 *              index for delay ring buffer (range = [0, 9])
 *              number of QMF subbands to process (range = [0, 64])
 *              number of channels
 *
 * Outputs:     64 consecutive 16-bit PCM samples, interleaved by factor of nChans
 *
 * Return:      none
 *
 * Notes:       this is carefully written to be efficient on ARM
 *              use the assembly code version in sbrqmfsk.s when building for ARM!
 **************************************************************************************/
#if (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
#ifdef __cplusplus
extern "C"
#endif
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans);
#else
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans)
{
	int k, dOff0, dOff1;
	U64 sum64;

	dOff0 = (dIdx)*128;
	dOff1 = dOff0 - 1;
	if (dOff1 < 0)
		dOff1 += 1280;

	/* scaling note: total gain of coefs (cPtr[0]-cPtr[9] for any k) is < 2.0, so 1 GB in delay values is adequate */
	for (k = 0; k <= 63; k++) {
		sum64.w64 = 0;
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]);	dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]);	dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]);	dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]);	dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]);	dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]);	dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]);	dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]);	dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]);	dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
		sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]);	dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}

		dOff0++;
		dOff1--;
		*outbuf = CLIPTOSHORT((sum64.r.hi32 + RND_VAL) >> FBITS_OUT_QMFS);
		outbuf += nChans;
	}
}
#endif

/**************************************************************************************
 * Function:    QMFSynthesis
 *
 * Description: 64-subband synthesis QMF (4.6.18.4.2)
 *
 * Inputs:      64 consecutive complex subband QMF samples, format = Q(FBITS_IN_QMFS)
 *              delay buffer of size 64*10 = 640 complex samples (1280 ints)
 *              index for delay ring buffer (range = [0, 9])
 *              number of QMF subbands to process (range = [0, 64])
 *              number of channels
 *
 * Outputs:     64 consecutive 16-bit PCM samples, interleaved by factor of nChans
 *              updated delay buffer
 *              updated delay index
 *
 * Return:      none
 *
 * Notes:       assumes MIN_GBITS_IN_QMFS guard bits in input, either from
 *                QMFAnalysis (if upsampling only) or from MapHF (if SBR on)
 **************************************************************************************/
void QMFSynthesis(int *inbuf, int *delay, int *delayIdx, int qmfsBands, short *outbuf, int nChans)
{
	int n, a0, a1, b0, b1, dOff0, dOff1, dIdx;
	int *tBufLo, *tBufHi;

	dIdx = *delayIdx;
	tBufLo = delay + dIdx*128 + 0;
	tBufHi = delay + dIdx*128 + 127;

	/* reorder inputs to DCT-IV, only use first qmfsBands (complex) samples
	 * TODO - fuse with PreMultiply64 to avoid separate reordering steps
	 */
    for (n = 0; n < qmfsBands >> 1; n++) {
		a0 = *inbuf++;
		b0 = *inbuf++;
		a1 = *inbuf++;
		b1 = *inbuf++;
		*tBufLo++ = a0;
        *tBufLo++ = a1;
        *tBufHi-- = b0;
        *tBufHi-- = b1;
    }
	if (qmfsBands & 0x01) {
		a0 = *inbuf++;
		b0 = *inbuf++;
		*tBufLo++ = a0;
        *tBufHi-- = b0;
        *tBufLo++ = 0;
		*tBufHi-- = 0;
		n++;
	}
    for (     ; n < 32; n++) {
		*tBufLo++ = 0;
        *tBufHi-- = 0;
        *tBufLo++ = 0;
        *tBufHi-- = 0;
	}

	tBufLo = delay + dIdx*128 + 0;
	tBufHi = delay + dIdx*128 + 64;

	/* 2 GB in, 3 GB out */
	PreMultiply64(tBufLo);
	PreMultiply64(tBufHi);

	/* 3 GB in, 1 GB out */
	FFT32C(tBufLo);
	FFT32C(tBufHi);

	/* 1 GB in, 2 GB out */
	PostMultiply64(tBufLo, 64);
	PostMultiply64(tBufHi, 64);

	/* could fuse with PostMultiply64 to avoid separate pass */
	dOff0 = dIdx*128;
	dOff1 = dIdx*128 + 64;
	for (n = 32; n != 0; n--) {
		a0 =  (*tBufLo++);
		a1 =  (*tBufLo++);
		b0 =  (*tBufHi++);
		b1 = -(*tBufHi++);

		delay[dOff0++] = (b0 - a0);
		delay[dOff0++] = (b1 - a1);
		delay[dOff1++] = (b0 + a0);
		delay[dOff1++] = (b1 + a1);
	}

	QMFSynthesisConv((int *)cTabS, delay, dIdx, outbuf, nChans);

	*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -