📄 sbrqmf.c
字号:
/* ***** BEGIN LICENSE BLOCK *****
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker (jrecker@real.com)
* February 2005
*
* sbrqmf.c - analysis and synthesis QMF filters for SBR
**************************************************************************************/
#include "sbr.h"
#include "assembly.h"
/* PreMultiply64() table
* format = Q30
* reordered for sequential access
*
* for (i = 0; i < 64/4; i++) {
* angle = (i + 0.25) * M_PI / nmdct;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
*
* angle = (nmdct/2 - 1 - i + 0.25) * M_PI / nmdct;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
* }
*/
static const int cos4sin4tab64[64] = {
0x40c7d2bd, 0x00c90e90, 0x424ff28f, 0x3ff4e5e0, 0x43cdd89a, 0x03ecadcf, 0x454149fc, 0x3fc395f9,
0x46aa0d6d, 0x070de172, 0x4807eb4b, 0x3f6af2e3, 0x495aada2, 0x0a2abb59, 0x4aa22036, 0x3eeb3347,
0x4bde1089, 0x0d415013, 0x4d0e4de2, 0x3e44a5ef, 0x4e32a956, 0x104fb80e, 0x4f4af5d1, 0x3d77b192,
0x50570819, 0x135410c3, 0x5156b6d9, 0x3c84d496, 0x5249daa2, 0x164c7ddd, 0x53304df6, 0x3b6ca4c4,
0x5409ed4b, 0x19372a64, 0x54d69714, 0x3a2fcee8, 0x55962bc0, 0x1c1249d8, 0x56488dc5, 0x38cf1669,
0x56eda1a0, 0x1edc1953, 0x57854ddd, 0x374b54ce, 0x580f7b19, 0x2192e09b, 0x588c1404, 0x35a5793c,
0x58fb0568, 0x2434f332, 0x595c3e2a, 0x33de87de, 0x59afaf4c, 0x26c0b162, 0x59f54bee, 0x31f79948,
0x5a2d0957, 0x29348937, 0x5a56deec, 0x2ff1d9c7, 0x5a72c63b, 0x2b8ef77d, 0x5a80baf6, 0x2dce88aa,
};
/* PostMultiply64() table
* format = Q30
* reordered for sequential access
*
* for (i = 0; i <= (32/2); i++) {
* angle = i * M_PI / 64;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
* }
*/
static const int cos1sin1tab64[34] = {
0x40000000, 0x00000000, 0x43103085, 0x0323ecbe, 0x45f704f7, 0x0645e9af, 0x48b2b335, 0x09640837,
0x4b418bbe, 0x0c7c5c1e, 0x4da1fab5, 0x0f8cfcbe, 0x4fd288dc, 0x1294062f, 0x51d1dc80, 0x158f9a76,
0x539eba45, 0x187de2a7, 0x553805f2, 0x1b5d100a, 0x569cc31b, 0x1e2b5d38, 0x57cc15bc, 0x20e70f32,
0x58c542c5, 0x238e7673, 0x5987b08a, 0x261feffa, 0x5a12e720, 0x2899e64a, 0x5a6690ae, 0x2afad269,
0x5a82799a, 0x2d413ccd,
};
/**************************************************************************************
* Function: PreMultiply64
*
* Description: pre-twiddle stage of 64-point DCT-IV
*
* Inputs: buffer of 64 samples
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
* gbOut = gbIn + 1
* output is limited to sqrt(2)/2 plus GB in full GB
* uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
**************************************************************************************/
static void PreMultiply64(int *zbuf1)
{
int i, ar1, ai1, ar2, ai2, z1, z2;
int t, cms2, cps2a, sin2a, cps2b, sin2b;
int *zbuf2;
const int *csptr;
zbuf2 = zbuf1 + 64 - 1;
csptr = cos4sin4tab64;
/* whole thing should fit in registers - verify that compiler does this */
for (i = 64 >> 2; i != 0; i--) {
/* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */
cps2a = *csptr++;
sin2a = *csptr++;
cps2b = *csptr++;
sin2b = *csptr++;
ar1 = *(zbuf1 + 0);
ai2 = *(zbuf1 + 1);
ai1 = *(zbuf2 + 0);
ar2 = *(zbuf2 - 1);
/* gain 2 ints bit from MULSHIFT32 by Q30
* max per-sample gain (ignoring implicit scaling) = MAX(sin(angle)+cos(angle)) = 1.414
* i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from
* extra sign bits, and eat one in adding
*/
t = MULSHIFT32(sin2a, ar1 + ai1);
z2 = MULSHIFT32(cps2a, ai1) - t;
cms2 = cps2a - 2*sin2a;
z1 = MULSHIFT32(cms2, ar1) + t;
*zbuf1++ = z1; /* cos*ar1 + sin*ai1 */
*zbuf1++ = z2; /* cos*ai1 - sin*ar1 */
t = MULSHIFT32(sin2b, ar2 + ai2);
z2 = MULSHIFT32(cps2b, ai2) - t;
cms2 = cps2b - 2*sin2b;
z1 = MULSHIFT32(cms2, ar2) + t;
*zbuf2-- = z2; /* cos*ai2 - sin*ar2 */
*zbuf2-- = z1; /* cos*ar2 + sin*ai2 */
}
}
/**************************************************************************************
* Function: PostMultiply64
*
* Description: post-twiddle stage of 64-point type-IV DCT
*
* Inputs: buffer of 64 samples
* number of output samples to calculate
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
* gbOut = gbIn + 1
* output is limited to sqrt(2)/2 plus GB in full GB
* nSampsOut is rounded up to next multiple of 4, since we calculate
* 4 samples per loop
**************************************************************************************/
static void PostMultiply64(int *fft1, int nSampsOut)
{
int i, ar1, ai1, ar2, ai2;
int t, cms2, cps2, sin2;
int *fft2;
const int *csptr;
csptr = cos1sin1tab64;
fft2 = fft1 + 64 - 1;
/* load coeffs for first pass
* cps2 = (cos+sin)/2, sin2 = sin/2, cms2 = (cos-sin)/2
*/
cps2 = *csptr++;
sin2 = *csptr++;
cms2 = cps2 - 2*sin2;
for (i = (nSampsOut + 3) >> 2; i != 0; i--) {
ar1 = *(fft1 + 0);
ai1 = *(fft1 + 1);
ar2 = *(fft2 - 1);
ai2 = *(fft2 + 0);
/* gain 2 int bits (multiplying by Q30), max gain = sqrt(2) */
t = MULSHIFT32(sin2, ar1 + ai1);
*fft2-- = t - MULSHIFT32(cps2, ai1);
*fft1++ = t + MULSHIFT32(cms2, ar1);
cps2 = *csptr++;
sin2 = *csptr++;
ai2 = -ai2;
t = MULSHIFT32(sin2, ar2 + ai2);
*fft2-- = t - MULSHIFT32(cps2, ai2);
cms2 = cps2 - 2*sin2;
*fft1++ = t + MULSHIFT32(cms2, ar2);
}
}
/**************************************************************************************
* Function: QMFAnalysisConv
*
* Description: convolution kernel for analysis QMF
*
* Inputs: pointer to coefficient table, reordered for sequential access
* delay buffer of size 32*10 = 320 real-valued PCM samples
* index for delay ring buffer (range = [0, 9])
*
* Outputs: 64 consecutive 32-bit samples
*
* Return: none
*
* Notes: this is carefully written to be efficient on ARM
* use the assembly code version in sbrqmfak.s when building for ARM!
**************************************************************************************/
#if (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
#ifdef __cplusplus
extern "C"
#endif
void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf);
#else
void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf)
{
int k, dOff;
int *cPtr0, *cPtr1;
U64 u64lo, u64hi;
dOff = dIdx*32 + 31;
cPtr0 = cTab;
cPtr1 = cTab + 33*5 - 1;
/* special first pass since we need to flip sign to create cTab[384], cTab[512] */
u64lo.w64 = 0;
u64hi.w64 = 0;
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
uBuf[0] = u64lo.r.hi32;
uBuf[32] = u64hi.r.hi32;
uBuf++;
dOff--;
/* max gain for any sample in uBuf, after scaling by cTab, ~= 0.99
* so we can just sum the uBuf values with no overflow problems
*/
for (k = 1; k <= 31; k++) {
u64lo.w64 = 0;
u64hi.w64 = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -