⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fftsg.cpp

📁 从FFMPEG转换而来的H264解码程序,VC下编译..
💻 CPP
📖 第 1 页 / 共 5 页
字号:
#include "stdafx.h"
#include "fftsg.h"

class fftsg
{
typedef float REAL;
public:
        /*
        Fast Fourier/Cosine/Sine Transform
                dimension   :one
                data length :power of 2
                decimation  :frequency
                radix       :split-radix
                data        :inplace
                table       :use
        functions
                cdft: Complex Discrete Fourier Transform
                rdft: Real Discrete Fourier Transform
                ddct: Discrete Cosine Transform
                ddst: Discrete Sine Transform
                dfct: Cosine Transform of RDFT (Real Symmetric DFT)
                dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
        function prototypes
                void cdft(int, int, REAL *, int *, REAL *);
                void rdft(int, int, REAL *, int *, REAL *);
                void ddct(int, int, REAL *, int *, REAL *);
                void ddst(int, int, REAL *, int *, REAL *);
                void dfct(int, REAL *, REAL *, int *, REAL *);
                void dfst(int, REAL *, REAL *, int *, REAL *);


        -------- Complex DFT (Discrete Fourier Transform) --------
                [definition]
                        <case1>
                                X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
                        <case2>
                                X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
                        (notes: sum_j=0^n-1 is a summation from j=0 to n-1)
                [usage]
                        <case1>
                                ip[0] = 0; // first time only
                                cdft(2*n, 1, a, ip, w);
                        <case2>
                                ip[0] = 0; // first time only
                                cdft(2*n, -1, a, ip, w);
                [parameters]
                        2*n            :data length (int)
                                                        n >= 1, n = power of 2
                        a[0...2*n-1]   :input/output data (REAL *)
                                                        input data
                                                                a[2*j] = Re(x[j]),
                                                                a[2*j+1] = Im(x[j]), 0<=j<n
                                                        output data
                                                                a[2*k] = Re(X[k]),
                                                                a[2*k+1] = Im(X[k]), 0<=k<n
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n/2-1]   :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                cdft(2*n, -1, a, ip, w);
                        is
                                cdft(2*n, 1, a, ip, w);
                                for (j = 0; j <= 2 * n - 1; j++) {
                                        a[j] *= 1.0 / n;
                                }
                        .


        -------- Real DFT / Inverse of Real DFT --------
                [definition]
                        <case1> RDFT
                                R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
                                I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
                        <case2> IRDFT (excluding scale)
                                a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +
                                           sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
                                           sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
                [usage]
                        <case1>
                                ip[0] = 0; // first time only
                                rdft(n, 1, a, ip, w);
                        <case2>
                                ip[0] = 0; // first time only
                                rdft(n, -1, a, ip, w);
                [parameters]
                        n              :data length (int)
                                                        n >= 2, n = power of 2
                        a[0...n-1]     :input/output data (REAL *)
                                                        <case1>
                                                                output data
                                                                        a[2*k] = R[k], 0<=k<n/2
                                                                        a[2*k+1] = I[k], 0<k<n/2
                                                                        a[1] = R[n/2]
                                                        <case2>
                                                                input data
                                                                        a[2*j] = R[j], 0<=j<n/2
                                                                        a[2*j+1] = I[j], 0<j<n/2
                                                                        a[1] = R[n/2]
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n/2)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n/2-1]   :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                rdft(n, 1, a, ip, w);
                        is
                                rdft(n, -1, a, ip, w);
                                for (j = 0; j <= n - 1; j++) {
                                        a[j] *= 2.0 / n;
                                }
                        .


        -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
                [definition]
                        <case1> IDCT (excluding scale)
                                C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
                        <case2> DCT
                                C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
                [usage]
                        <case1>
                                ip[0] = 0; // first time only
                                ddct(n, 1, a, ip, w);
                        <case2>
                                ip[0] = 0; // first time only
                                ddct(n, -1, a, ip, w);
                [parameters]
                        n              :data length (int)
                                                        n >= 2, n = power of 2
                        a[0...n-1]     :input/output data (REAL *)
                                                        output data
                                                                a[k] = C[k], 0<=k<n
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n/2)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n*5/4-1] :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                ddct(n, -1, a, ip, w);
                        is
                                a[0] *= 0.5;
                                ddct(n, 1, a, ip, w);
                                for (j = 0; j <= n - 1; j++) {
                                        a[j] *= 2.0 / n;
                                }
                        .


        -------- DST (Discrete Sine Transform) / Inverse of DST --------
                [definition]
                        <case1> IDST (excluding scale)
                                S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
                        <case2> DST
                                S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
                [usage]
                        <case1>
                                ip[0] = 0; // first time only
                                ddst(n, 1, a, ip, w);
                        <case2>
                                ip[0] = 0; // first time only
                                ddst(n, -1, a, ip, w);
                [parameters]
                        n              :data length (int)
                                                        n >= 2, n = power of 2
                        a[0...n-1]     :input/output data (REAL *)
                                                        <case1>
                                                                input data
                                                                        a[j] = A[j], 0<j<n
                                                                        a[0] = A[n]
                                                                output data
                                                                        a[k] = S[k], 0<=k<n
                                                        <case2>
                                                                output data
                                                                        a[k] = S[k], 0<k<n
                                                                        a[0] = S[n]
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n/2)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n*5/4-1] :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                ddst(n, -1, a, ip, w);
                        is
                                a[0] *= 0.5;
                                ddst(n, 1, a, ip, w);
                                for (j = 0; j <= n - 1; j++) {
                                        a[j] *= 2.0 / n;
                                }
                        .


        -------- Cosine Transform of RDFT (Real Symmetric DFT) --------
                [definition]
                        C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
                [usage]
                        ip[0] = 0; // first time only
                        dfct(n, a, t, ip, w);
                [parameters]
                        n              :data length - 1 (int)
                                                        n >= 2, n = power of 2
                        a[0...n]       :input/output data (REAL *)
                                                        output data
                                                                a[k] = C[k], 0<=k<=n
                        t[0...n/2]     :work area (REAL *)
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n/4)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n/4+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n*5/8-1] :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                a[0] *= 0.5;
                                a[n] *= 0.5;
                                dfct(n, a, t, ip, w);
                        is
                                a[0] *= 0.5;
                                a[n] *= 0.5;
                                dfct(n, a, t, ip, w);
                                for (j = 0; j <= n; j++) {
                                        a[j] *= 2.0 / n;
                                }
                        .


        -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
                [definition]
                        S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
                [usage]
                        ip[0] = 0; // first time only
                        dfst(n, a, t, ip, w);
                [parameters]
                        n              :data length + 1 (int)
                                                        n >= 2, n = power of 2
                        a[0...n-1]     :input/output data (REAL *)
                                                        output data
                                                                a[k] = S[k], 0<k<n
                                                        (a[0] is used for work area)
                        t[0...n/2-1]   :work area (REAL *)
                        ip[0...*]      :work area for bit reversal (int *)
                                                        length of ip >= 2+sqrt(n/4)
                                                        strictly,
                                                        length of ip >=
                                                                2+(1<<(int)(log(n/4+0.5)/log(2))/2).
                                                        ip[0],ip[1] are pointers of the cos/sin table.
                        w[0...n*5/8-1] :cos/sin table (REAL *)
                                                        w[],ip[] are initialized if ip[0] == 0.
                [remark]
                        Inverse of
                                dfst(n, a, t, ip, w);
                        is
                                dfst(n, a, t, ip, w);
                                for (j = 1; j <= n - 1; j++) {
                                        a[j] *= 2.0 / n;
                                }
                        .


        Appendix :
                The cos/sin table is recalculated when the larger table required.
                w[] and ip[] are compatible with all routines.
        */


        static void cdft(int n, int isgn, REAL *a, int *ip, REAL *w)
        {
                int nw;

                nw = ip[0];
                if (n > (nw << 2)) {
                        nw = n >> 2;
                        makewt(nw, ip, w);
                }
                if (isgn >= 0) {
                        cftfsub(n, a, ip + 2, nw, w);
                } else {
                        cftbsub(n, a, ip + 2, nw, w);
                }
        }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -