⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 serpentengine.java

📁 《移动Agent技术》一书的所有章节源代码。
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
        X0 ^= wKey[52]; X1 ^= wKey[53]; X2 ^= wKey[54]; X3 ^= wKey[55];        inverseLT(); ib4(X0, X1, X2, X3);        X0 ^= wKey[48]; X1 ^= wKey[49]; X2 ^= wKey[50]; X3 ^= wKey[51];        inverseLT(); ib3(X0, X1, X2, X3);        X0 ^= wKey[44]; X1 ^= wKey[45]; X2 ^= wKey[46]; X3 ^= wKey[47];        inverseLT(); ib2(X0, X1, X2, X3);        X0 ^= wKey[40]; X1 ^= wKey[41]; X2 ^= wKey[42]; X3 ^= wKey[43];        inverseLT(); ib1(X0, X1, X2, X3);        X0 ^= wKey[36]; X1 ^= wKey[37]; X2 ^= wKey[38]; X3 ^= wKey[39];        inverseLT(); ib0(X0, X1, X2, X3);        X0 ^= wKey[32]; X1 ^= wKey[33]; X2 ^= wKey[34]; X3 ^= wKey[35];        inverseLT(); ib7(X0, X1, X2, X3);        X0 ^= wKey[28]; X1 ^= wKey[29]; X2 ^= wKey[30]; X3 ^= wKey[31];        inverseLT(); ib6(X0, X1, X2, X3);        X0 ^= wKey[24]; X1 ^= wKey[25]; X2 ^= wKey[26]; X3 ^= wKey[27];        inverseLT(); ib5(X0, X1, X2, X3);        X0 ^= wKey[20]; X1 ^= wKey[21]; X2 ^= wKey[22]; X3 ^= wKey[23];        inverseLT(); ib4(X0, X1, X2, X3);        X0 ^= wKey[16]; X1 ^= wKey[17]; X2 ^= wKey[18]; X3 ^= wKey[19];        inverseLT(); ib3(X0, X1, X2, X3);        X0 ^= wKey[12]; X1 ^= wKey[13]; X2 ^= wKey[14]; X3 ^= wKey[15];        inverseLT(); ib2(X0, X1, X2, X3);        X0 ^= wKey[8]; X1 ^= wKey[9]; X2 ^= wKey[10]; X3 ^= wKey[11];        inverseLT(); ib1(X0, X1, X2, X3);        X0 ^= wKey[4]; X1 ^= wKey[5]; X2 ^= wKey[6]; X3 ^= wKey[7];        inverseLT(); ib0(X0, X1, X2, X3);        wordToBytes(X3 ^ wKey[3], out, outOff);        wordToBytes(X2 ^ wKey[2], out, outOff + 4);        wordToBytes(X1 ^ wKey[1], out, outOff + 8);        wordToBytes(X0 ^ wKey[0], out, outOff + 12);    }    /**     * The sboxes below are based on the work of Brian Gladman and     * Sam Simpson, whose original notice appears below.     * <p>     * For further details see:     *      http://fp.gladman.plus.com/cryptography_technology/serpent/     */    /* Partially optimised Serpent S Box boolean functions derived  */	/* using a recursive descent analyser but without a full search */	/* of all subtrees. This set of S boxes is the result of work	*/	/* by Sam Simpson and Brian Gladman using the spare time on a	*/	/* cluster of high capacity servers to search for S boxes with	*/	/* this customised search engine. There are now an average of	*/	/* 15.375 terms	per S box.										*/	/*                                                              */	/* Copyright:   Dr B. R Gladman (gladman@seven77.demon.co.uk)   */	/*				and Sam Simpson (s.simpson@mia.co.uk)			*/	/*              17th December 1998								*/	/*                                                              */	/* We hereby give permission for information in this file to be */	/* used freely subject only to acknowledgement of its origin.	*/	/**	 * S0 - { 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } - 15 terms.	 */	private void sb0(int a, int b, int c, int d)		{		int	t1 = a ^ d;				int	t3 = c ^ t1;			int	t4 = b ^ t3;			X3 = (a & d) ^ t4;			int	t7 = a ^ (b & t1);			X2 = t4 ^ (c | t7);			int	t12 = X3 & (t3 ^ t7);			X1 = (~t3) ^ t12;			X0 = t12 ^ (~t7);	}    /**     * InvSO - {13, 3,11, 0,10, 6, 5,12, 1,14, 4, 7,15, 9, 8, 2 } - 15 terms.     */	private void ib0(int a, int b, int c, int d)		{		int	t1 = ~a;				int	t2 = a ^ b;				int	t4 = d ^ (t1 | t2);			int	t5 = c ^ t4;			X2 = t2 ^ t5;			int	t8 = t1 ^ (d & t2);			X1 = t4 ^ (X2 & t8);			X3 = (a & t4) ^ (t5 | X1);			X0 = X3 ^ (t5 ^ t8);	}	/**	 * S1 - {15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } - 14 terms.	 */	private void sb1(int a, int b, int c, int d)		{		int	t2 = b ^ (~a);			int	t5 = c ^ (a | t2);			X2 = d ^ t5;				int	t7 = b ^ (d | t2);			int	t8 = t2 ^ X2;			X3 = t8 ^ (t5 & t7);			int	t11 = t5 ^ t7;			X1 = X3 ^ t11;			X0 = t5 ^ (t8 & t11);	}    /**     * InvS1 - { 5, 8, 2,14,15, 6,12, 3,11, 4, 7, 9, 1,13,10, 0 } - 14 steps.     */	private void ib1(int a, int b, int c, int d)		{		int	t1 = b ^ d;				int	t3 = a ^ (b & t1);			int	t4 = t1 ^ t3;			X3 = c ^ t4;				int	t7 = b ^ (t1 & t3);			int	t8 = X3 | t7;			X1 = t3 ^ t8;			int	t10 = ~X1;				int	t11 = X3 ^ t7;			X0 = t10 ^ t11;			X2 = t4 ^ (t10 | t11);	}	/**	 * S2 - { 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } - 16 terms.	 */	private void sb2(int a, int b, int c, int d)		{		int	t1 = ~a;				int	t2 = b ^ d;		int	t3 = c & t1;		X0 = t2 ^ t3;		int	t5 = c ^ t1;		int	t6 = c ^ X0;		int	t7 = b & t6;		X3 = t5 ^ t7;		X2 = a ^ ((d | t7) & (X0 | t5));		X1 = (t2 ^ X3) ^ (X2 ^ (d | t1));	}    /**     * InvS2 - {12, 9,15, 4,11,14, 1, 2, 0, 3, 6,13, 5, 8,10, 7 } - 16 steps.     */	private void ib2(int a, int b, int c, int d)		{		int	t1 = b ^ d;				int	t2 = ~t1;				int	t3 = a ^ c;		int	t4 = c ^ t1;		int	t5 = b & t4;		X0 = t3 ^ t5;		int	t7 = a | t2;		int	t8 = d ^ t7;		int	t9 = t3 | t8;		X3 = t1 ^ t9;		int	t11 = ~t4;				int	t12 = X0 | X3;		X1 = t11 ^ t12;		X2 = (d & t11) ^ (t3 ^ t12);	}	/**	 * S3 - { 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } - 16 terms.	 */	private void sb3(int a, int b, int c, int d)		{		int	t1 = a ^ b;				int	t2 = a & c;				int	t3 = a | d;				int	t4 = c ^ d;				int	t5 = t1 & t3;			int	t6 = t2 | t5;			X2 = t4 ^ t6;			int	t8 = b ^ t3;			int	t9 = t6 ^ t8;			int	t10 = t4 & t9;			X0 = t1 ^ t10;			int	t12 = X2 & X0;			X1 = t9 ^ t12;			X3 = (b | d) ^ (t4 ^ t12);	}    /**     * InvS3 - { 0, 9,10, 7,11,14, 6,13, 3, 5,12, 2, 4, 8,15, 1 } - 15 terms     */	private void ib3(int a, int b, int c, int d)		{		int	t1 = a | b;				int	t2 = b ^ c;				int	t3 = b & t2;			int	t4 = a ^ t3;			int	t5 = c ^ t4;			int	t6 = d | t4;			X0 = t2 ^ t6;			int	t8 = t2 | t6;			int	t9 = d ^ t8;			X2 = t5 ^ t9;			int	t11 = t1 ^ t9;			int	t12 = X0 & t11;			X3 = t4 ^ t12;			X1 = X3 ^ (X0 ^ t11);	}	/**	 * S4 - { 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } - 15 terms.	 */	private void sb4(int a, int b, int c, int d)		{		int	t1 = a ^ d;				int	t2 = d & t1;			int	t3 = c ^ t2;			int	t4 = b | t3;			X3 = t1 ^ t4;			int	t6 = ~b;				int	t7 = t1 | t6;			X0 = t3 ^ t7;			int	t9 = a & X0;				int	t10 = t1 ^ t6;			int	t11 = t4 & t10;			X2 = t9 ^ t11;			X1 = (a ^ t3) ^ (t10 & X2);	}    /**     * InvS4 - { 5, 0, 8, 3,10, 9, 7,14, 2,12,11, 6, 4,15,13, 1 } - 15 terms.     */	private void ib4(int a, int b, int c, int d)		{		int	t1 = c | d;				int	t2 = a & t1;			int	t3 = b ^ t2;			int	t4 = a & t3;			int	t5 = c ^ t4;			X1 = d ^ t5;				int	t7 = ~a;				int	t8 = t5 & X1;			X3 = t3 ^ t8;			int	t10 = X1 | t7;			int	t11 = d ^ t10;			X0 = X3 ^ t11;			X2 = (t3 & t11) ^ (X1 ^ t7);	}	/**	 * S5 - {15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } - 16 terms.	 */	private void sb5(int a, int b, int c, int d)		{		int	t1 = ~a;				int	t2 = a ^ b;				int	t3 = a ^ d;				int	t4 = c ^ t1;			int	t5 = t2 | t3;			X0 = t4 ^ t5;			int	t7 = d & X0;				int	t8 = t2 ^ X0;			X1 = t7 ^ t8;			int	t10 = t1 | X0;			int	t11 = t2 | t7;			int	t12 = t3 ^ t10;			X2 = t11 ^ t12;			X3 = (b ^ t7) ^ (X1 & t12);	}    /**     * InvS5 - { 8,15, 2, 9, 4, 1,13,14,11, 6, 5, 3, 7,12,10, 0 } - 16 terms.     */	private void ib5(int a, int b, int c, int d)		{		int	t1 = ~c;		int	t2 = b & t1;		int	t3 = d ^ t2;		int	t4 = a & t3;		int	t5 = b ^ t1;		X3 = t4 ^ t5;		int	t7 = b | X3;		int	t8 = a & t7;		X1 = t3 ^ t8;		int	t10 = a | d;		int	t11 = t1 ^ t7;		X0 = t10 ^ t11;		X2 = (b & t10) ^ (t4 | (a ^ c));	}	/**	 * S6 - { 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } - 15 terms.	 */	private void sb6(int a, int b, int c, int d)		{		int	t1 = ~a;				int	t2 = a ^ d;				int	t3 = b ^ t2;			int	t4 = t1 | t2;			int	t5 = c ^ t4;			X1 = b ^ t5;				int	t7 = t2 | X1;			int	t8 = d ^ t7;			int	t9 = t5 & t8;			X2 = t3 ^ t9;			int	t11 = t5 ^ t8;			X0 = X2 ^ t11;			X3 = (~t5) ^ (t3 & t11);	}    /**     * InvS6 - {15,10, 1,13, 5, 3, 6, 0, 4, 9,14, 7, 2,12, 8,11 } - 15 terms.     */	private void ib6(int a, int b, int c, int d)		{		int	t1 = ~a;				int	t2 = a ^ b;				int	t3 = c ^ t2;			int	t4 = c | t1;			int	t5 = d ^ t4;			X1 = t3 ^ t5;			int	t7 = t3 & t5;			int	t8 = t2 ^ t7;			int	t9 = b | t8;			X3 = t5 ^ t9;			int	t11 = b | X3;			X0 = t8 ^ t11;			X2 = (d & t1) ^ (t3 ^ t11);	}	/**	 * S7 - { 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 } - 16 terms.	 */	private void sb7(int a, int b, int c, int d)		{		int	t1 = b ^ c;				int	t2 = c & t1;			int	t3 = d ^ t2;			int	t4 = a ^ t3;			int	t5 = d | t1;			int	t6 = t4 & t5;			X1 = b ^ t6;				int	t8 = t3 | X1;			int	t9 = a & t4;			X3 = t1 ^ t9;			int	t11 = t4 ^ t8;			int	t12 = X3 & t11;			X2 = t3 ^ t12;			X0 = (~t11) ^ (X3 & X2);	}    /**     * InvS7 - { 3, 0, 6,13, 9,14,15, 8, 5,12,11, 7,10, 1, 4, 2 } - 17 terms.     */	private void ib7(int a, int b, int c, int d)		{        int t3 = c | (a & b);		int	t4 = d & (a | b);		X3 = t3 ^ t4;		int	t6 = ~d;		int	t7 = b ^ t4;		int	t9 = t7 | (X3 ^ t6);		X1 = a ^ t9;		X0 = (c ^ t7) ^ (d | X1);		X2 = (t3 ^ X1) ^ (X0 ^ (a & X3));	}    /**     * Apply the the linear transformation to the register set.     */    private void LT()    {        int x0  = rotateLeft(X0, 13);        int x2  = rotateLeft(X2, 3);        int x1  = X1 ^ x0 ^ x2 ;        int x3  = X3 ^ x2 ^ x0 << 3;        X1  = rotateLeft(x1, 1);        X3  = rotateLeft(x3, 7);        X0  = rotateLeft(x0 ^ X1 ^ X3, 5);        X2  = rotateLeft(x2 ^ X3 ^ (X1 << 7), 22);    }    /**     * Apply the inverse of the linear transformation to the register set.     */    private void inverseLT()    {        int x2 = rotateRight(X2, 22) ^ X3 ^ (X1 << 7);        int x0 = rotateRight(X0, 5) ^ X1 ^ X3;        int x3 = rotateRight(X3, 7);        int x1 = rotateRight(X1, 1);        X3 = x3 ^ x2 ^ x0 << 3;        X1 = x1 ^ x0 ^ x2;        X2 = rotateRight(x2, 3);        X0 = rotateRight(x0, 13);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -