📄 nsga2r.c
字号:
/* NSGA-II routine (implementation of the 'main' function) */# include <stdio.h># include <stdlib.h># include <math.h># include "global.h"# include "rand.h"int nreal;int nbin;int nobj;int ncon;int popsize;double pcross_real;double pcross_bin;double pmut_real;double pmut_bin;double eta_c;double eta_m;int ngen;int nbinmut;int nrealmut;int nbincross;int nrealcross;int *nbits;double *min_realvar;double *max_realvar;double *min_binvar;double *max_binvar;int bitlength;int main (int argc, char **argv){ int i; FILE *fpt1; FILE *fpt2; FILE *fpt3; FILE *fpt4; FILE *fpt5; population *parent_pop; population *child_pop; population *mixed_pop; if (argc<2) { printf("\n Usage ./nsga2r random_seed \n"); exit(1); } seed = (double)atof(argv[1]); if (seed<=0.0 || seed>=1.0) { printf("\n Entered seed value is wrong, seed value must be in (0,1) \n"); exit(1); } fpt1 = fopen("initial_pop.out","w"); fpt2 = fopen("final_pop.out","w"); fpt3 = fopen("best_pop.out","w"); fpt4 = fopen("all_pop.out","w"); fpt5 = fopen("params.out","w"); fprintf(fpt1,"# This file contains the data of initial population\n"); fprintf(fpt2,"# This file contains the data of final population\n"); fprintf(fpt3,"# This file contains the data of final feasible population (if found)\n"); fprintf(fpt4,"# This file contains the data of all generations\n"); fprintf(fpt5,"# This file contains information about inputs as read by the program\n"); printf("\n Enter the problem relevant and algorithm relevant parameters ... "); printf("\n Enter the population size (a multiple of 4) : "); scanf("%d",&popsize); if (popsize<4 || (popsize%4)!= 0) { printf("\n population size read is : %d",popsize); printf("\n Wrong population size entered, hence exiting \n"); exit (1); } printf("\n Enter the number of generations : "); scanf("%d",&ngen); if (ngen<1) { printf("\n number of generations read is : %d",ngen); printf("\n Wrong nuber of generations entered, hence exiting \n"); exit (1); } printf("\n Enter the number of objectives : "); scanf("%d",&nobj); if (nobj<1) { printf("\n number of objectives entered is : %d",nobj); printf("\n Wrong number of objectives entered, hence exiting \n"); exit (1); } printf("\n Enter the number of constraints : "); scanf("%d",&ncon); if (ncon<0) { printf("\n number of constraints entered is : %d",ncon); printf("\n Wrong number of constraints enetered, hence exiting \n"); exit (1); } printf("\n Enter the number of real variables : "); scanf("%d",&nreal); if (nreal<0) { printf("\n number of real variables entered is : %d",nreal); printf("\n Wrong number of variables entered, hence exiting \n"); exit (1); } if (nreal != 0) { min_realvar = (double *)malloc(nreal*sizeof(double)); max_realvar = (double *)malloc(nreal*sizeof(double)); for (i=0; i<nreal; i++) { printf ("\n Enter the lower limit of real variable %d : ",i+1); scanf ("%lf",&min_realvar[i]); printf ("\n Enter the upper limit of real variable %d : ",i+1); scanf ("%lf",&max_realvar[i]); if (max_realvar[i] <= min_realvar[i]) { printf("\n Wrong limits entered for the min and max bounds of real variable, hence exiting \n"); exit(1); } } printf ("\n Enter the probability of crossover of real variable (0.6-1.0) : "); scanf ("%lf",&pcross_real); if (pcross_real<0.0 || pcross_real>1.0) { printf("\n Probability of crossover entered is : %e",pcross_real); printf("\n Entered value of probability of crossover of real variables is out of bounds, hence exiting \n"); exit (1); } printf ("\n Enter the probablity of mutation of real variables (1/nreal) : "); scanf ("%lf",&pmut_real); if (pmut_real<0.0 || pmut_real>1.0) { printf("\n Probability of mutation entered is : %e",pmut_real); printf("\n Entered value of probability of mutation of real variables is out of bounds, hence exiting \n"); exit (1); } printf ("\n Enter the value of distribution index for crossover (5-20): "); scanf ("%lf",&eta_c); if (eta_c<=0) { printf("\n The value entered is : %e",eta_c); printf("\n Wrong value of distribution index for crossover entered, hence exiting \n"); exit (1); } printf ("\n Enter the value of distribution index for mutation (5-50): "); scanf ("%lf",&eta_m); if (eta_m<=0) { printf("\n The value entered is : %e",eta_m); printf("\n Wrong value of distribution index for mutation entered, hence exiting \n"); exit (1); } } printf("\n Enter the number of binary variables : "); scanf("%d",&nbin); if (nbin<0) { printf ("\n number of binary variables entered is : %d",nbin); printf ("\n Wrong number of binary variables entered, hence exiting \n"); exit(1); } if (nbin != 0) { nbits = (int *)malloc(nbin*sizeof(int)); min_binvar = (double *)malloc(nbin*sizeof(double)); max_binvar = (double *)malloc(nbin*sizeof(double)); for (i=0; i<nbin; i++) { printf ("\n Enter the number of bits for binary variable %d : ",i+1); scanf ("%d",&nbits[i]); if (nbits[i] < 1) { printf("\n Wrong number of bits for binary variable entered, hence exiting"); exit(1); } printf ("\n Enter the lower limit of binary variable %d : ",i+1); scanf ("%lf",&min_binvar[i]); printf ("\n Enter the upper limit of binary variable %d : ",i+1); scanf ("%lf",&max_binvar[i]); if (max_binvar[i] <= min_binvar[i]) { printf("\n Wrong limits entered for the min and max bounds of binary variable entered, hence exiting \n"); exit(1); } } printf ("\n Enter the probability of crossover of binary variable (0.6-1.0): "); scanf ("%lf",&pcross_bin); if (pcross_bin<0.0 || pcross_bin>1.0) { printf("\n Probability of crossover entered is : %e",pcross_bin); printf("\n Entered value of probability of crossover of binary variables is out of bounds, hence exiting \n"); exit (1); } printf ("\n Enter the probability of mutation of binary variables (1/nbits): "); scanf ("%lf",&pmut_bin); if (pmut_bin<0.0 || pmut_bin>1.0) { printf("\n Probability of mutation entered is : %e",pmut_bin); printf("\n Entered value of probability of mutation of binary variables is out of bounds, hence exiting \n"); exit (1); } } if (nreal==0 && nbin==0) { printf("\n Number of real as well as binary variables, both are zero, hence exiting \n"); exit(1); } printf("\n Input data successfully entered, now performing initialization \n"); fprintf(fpt5,"\n Population size = %d",popsize); fprintf(fpt5,"\n Number of generations = %d",ngen); fprintf(fpt5,"\n Number of objective functions = %d",nobj); fprintf(fpt5,"\n Number of constraints = %d",ncon); fprintf(fpt5,"\n Number of real variables = %d",nreal); if (nreal!=0) { for (i=0; i<nreal; i++) { fprintf(fpt5,"\n Lower limit of real variable %d = %e",i+1,min_realvar[i]); fprintf(fpt5,"\n Upper limit of real variable %d = %e",i+1,max_realvar[i]); } fprintf(fpt5,"\n Probability of crossover of real variable = %e",pcross_real); fprintf(fpt5,"\n Probability of mutation of real variable = %e",pmut_real); fprintf(fpt5,"\n Distribution index for crossover = %e",eta_c); fprintf(fpt5,"\n Distribution index for mutation = %e",eta_m); } fprintf(fpt5,"\n Number of binary variables = %d",nbin); if (nbin!=0) { for (i=0; i<nbin; i++) { fprintf(fpt5,"\n Number of bits for binary variable %d = %d",i+1,nbits[i]); fprintf(fpt5,"\n Lower limit of binary variable %d = %e",i+1,min_binvar[i]); fprintf(fpt5,"\n Upper limit of binary variable %d = %e",i+1,max_binvar[i]); } fprintf(fpt5,"\n Probability of crossover of binary variable = %e",pcross_bin); fprintf(fpt5,"\n Probability of mutation of binary variable = %e",pmut_bin); } fprintf(fpt5,"\n Seed for random number generator = %e",seed); bitlength = 0; if (nbin!=0) { for (i=0; i<nbin; i++) { bitlength += nbits[i]; } } fprintf(fpt1,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of bin_var = %d, constr_violation, rank, crowding_distance\n",nobj,ncon,nreal,bitlength); fprintf(fpt2,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of bin_var = %d, constr_violation, rank, crowding_distance\n",nobj,ncon,nreal,bitlength); fprintf(fpt3,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of bin_var = %d, constr_violation, rank, crowding_distance\n",nobj,ncon,nreal,bitlength); fprintf(fpt4,"# of objectives = %d, # of constraints = %d, # of real_var = %d, # of bits of bin_var = %d, constr_violation, rank, crowding_distance\n",nobj,ncon,nreal,bitlength); nbinmut = 0; nrealmut = 0; nbincross = 0; nrealcross = 0; parent_pop = (population *)malloc(sizeof(population)); child_pop = (population *)malloc(sizeof(population)); mixed_pop = (population *)malloc(sizeof(population)); allocate_memory_pop (parent_pop, popsize); allocate_memory_pop (child_pop, popsize); allocate_memory_pop (mixed_pop, 2*popsize); randomize(); initialize_pop (parent_pop); printf("\n Initialization done, now performing first generation"); decode_pop(parent_pop); evaluate_pop (parent_pop); assign_rank_and_crowding_distance (parent_pop); report_pop (parent_pop, fpt1); fprintf(fpt4,"# gen = 1\n"); report_pop(parent_pop,fpt4); printf("\n gen = 1"); fflush(stdout); fflush(fpt1); fflush(fpt2); fflush(fpt3); fflush(fpt4); fflush(fpt5); for (i=2; i<=ngen; i++) { selection (parent_pop, child_pop); mutation_pop (child_pop); decode_pop(child_pop); evaluate_pop(child_pop); merge (parent_pop, child_pop, mixed_pop); fill_nondominated_sort (mixed_pop, parent_pop); /* Comment following three lines if information for all generations is not desired, it will speed up the execution */ fprintf(fpt4,"# gen = %d\n",i); report_pop(parent_pop,fpt4); fflush(fpt4); printf("\n gen = %d",i); } printf("\n Generations finished, now reporting solutions"); report_pop(parent_pop,fpt2); report_feasible(parent_pop,fpt3); if (nreal!=0) { fprintf(fpt5,"\n Number of crossover of real variable = %d",nrealcross); fprintf(fpt5,"\n Number of mutation of real variable = %d",nrealmut); } if (nbin!=0) { fprintf(fpt5,"\n Number of crossover of binary variable = %d",nbincross); fprintf(fpt5,"\n Number of mutation of binary variable = %d",nbinmut); } fflush(stdout); fflush(fpt1); fflush(fpt2); fflush(fpt3); fflush(fpt4); fflush(fpt5); fclose(fpt1); fclose(fpt2); fclose(fpt3); fclose(fpt4); fclose(fpt5); if (nreal!=0) { free (min_realvar); free (max_realvar); } if (nbin!=0) { free (min_binvar); free (max_binvar); free (nbits); } deallocate_memory_pop (parent_pop, popsize); deallocate_memory_pop (child_pop, popsize); deallocate_memory_pop (mixed_pop, 2*popsize); free (parent_pop); free (child_pop); free (mixed_pop); printf("\n Routine successfully exited \n"); return (0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -