📄 vartick.c
字号:
//
// Copyright(C) Renesas Technology Corp. 2004-2005. All rights reserved.
//
// NK Kernel for ITS-DS7 Ver.0.8.0
//
// FILE : vartick.c
// CREATED : 2004.09.01
// MODIFIED : 2004.10.12
// AUTHOR : Renesas Technology Corp.
// HARDWARE : RENESAS ITS-DS7
// HISTORY :
// 2004.09.01
// - Created release code.
// (based on ASPEN for WCE5.0)
// 2004.10.12
// - Modified ISR of Timer2 (SHxTimer2ISRWrapped)
//
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Module Name:
vartick.c
Abstract:
This module implements the code necessary to handle SHx tiemr interrupt and
Kernel interface routines.
Notes:
--*/
#include <windows.h>
#include <nkintr.h>
#include <pkfuncs.h>
#include <shxtimer.h>
#include "sh7770.h"
#include "platform.h"
#include "drv_glob.h"
PTMU_COMREG pTmuComReg;
PTMU_CLOCK_REG pTmuTimer0, pTmuTimer1, pTmuTimer2;
//
// Implementation of variable tick scheduling for CPUs with count down timer.
// NOTE: we must be able to update the counter of the count down timer on the fly for this to work
// (i.e. will not work on x86 PIT since update can only be applied to the reload register, not
// the counter register)
// The algorithm we use here:
// (1) the constant register, which will be auto-reload on interrupt into counter register, is always set
// to the maximun possible value.
// (2) counter register will be on be updated in two places
// a. SetReschedTime
// b. TimerISR when SYSINTR_NOP is returned (scheduler wants to set the interrupt further away than
// the hardware limit), or tick is shifted.
//
//
// OEM constants
extern const DWORD OEMTimerFreq; // timer frequency
extern const int OEMMinTickDistance; // minimum distance between compare and count register while updating compare register
extern const DWORD OEMTimerBaseAddr; // base of the TMU register
void (* pOEMUpdateTimerLED) (DWORD dwMSec);
void (* pOEMUpdateProfLED) (DWORD dwSPC);
// NK variables
extern DWORD volatile CurMSec, dwReschedTime;
// constants derived from OEMTimerFreq
DWORD SHxMaxTicks; // max value set to counter register
int SHxCount1MS; // # of tick per MS
// variables
int nMaxSchedMSec; // this can be dynamically change when profiler/iltiming is running
//
// Kernel global variables used by GetIdleTime( ) to determine CPU utilization
//
extern DWORD curridlehigh, curridlelow, idleconv;
//
// set pointers to OEM functions
extern BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount);
extern BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpliPerformanceFreq);
volatile ULARGE_INTEGER CurTicks;
volatile ULARGE_INTEGER * pCurTicks = &CurTicks;
#define LastINTMSec CurMSec
extern void (*pOEMUpdateRescheduleTime) (DWORD dwTime);
volatile DWORD NextINTMSec;
volatile DWORD dwCounterBase;
volatile DWORD shifted_tick;
DWORD PerfCountSinceTick (void);
// BSP specific function
extern void SHxEnterIdle (DWORD dwIdleParam);
void (* pCPUEnterIdle) (DWORD dwIdleParam) = SHxEnterIdle;
// iltiming and profiler related variable
volatile BOOL fIntrTime, fProfilerRunning;
extern DWORD dwIsrTime1;
extern DWORD dwIsrTime2;
extern DWORD dwSPC;
extern WORD wNumInterrupts;
#pragma optimize("", off)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
DWORD PerfCountFreq (void)
{
return OEMTimerFreq;
}
//------------------------------------------------------------------------------
//
// OEMQueryPerformanceCounter
//
// The OEMQueryPerformanceCounter function retrieves the current value of
// the high-resolution performance counter, if one exists.
//
// BOOL QueryPerformanceCounter(
//
// LARGE_INTEGER *lpliPerformanceCount // address of current counter value
// );
//
// Parameters
//
// lpliPerformanceCount
//
// Points to a variable that the function sets, in counts, to the current
// performance-counter value. If the installed hardware does not support
// a high-resolution performance counter, this parameter can be to zero.
//
// Return Value
//
// If the installed hardware supports a high-resolution performance
// counter, the return value is TRUE.
// If the installed hardware does not support a high-resolution
// performance counter, the return value is FALSE.
//
// If this function is implemented by the OEM, the pointer pQueryPerformanceCounter
// should be initialized as follows:
//
// BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount)=OEMQueryPerformanceCounter;
//
//------------------------------------------------------------------------------
BOOL
OEMQueryPerformanceCounter(
LARGE_INTEGER *lpliPerformanceCount
)
{
ULARGE_INTEGER liBase;
DWORD dwCurCount;
// Make sure CurTicks is the same before and after read of counter to account for
// possible rollover
do {
liBase = CurTicks;
dwCurCount = PerfCountSinceTick ();
} while (liBase.LowPart != CurTicks.LowPart) ;
lpliPerformanceCount->QuadPart = liBase.QuadPart + dwCurCount;
return TRUE;
}
//------------------------------------------------------------------------------
//
// OEMQueryPerformanceFrequency
//
// The OEMQueryPerformanceFrequency function retrieves the frequency of
// the high-resolution performance counter, if one exists.
//
// BOOL OEMQueryPerformanceFrequency(
//
// LARGE_INTEGER *lpliPerformanceFreq // address of current frequency
// );
//
// Parameters
//
// lpliPerformanceFreq
//
// Points to a variable that the function sets, in counts per second, to
// the current performance-counter frequency. If the installed hardware
// does not support a high-resolution performance counter, this parameter
// can be to zero.
//
// Return Value
//
// If the installed hardware supports a high-resolution performance
// counter, the return value is TRUE.
// If the installed hardware does not support a high-resolution
// performance counter, the return value is FALSE.
//
// If this function is implemented by the OEM, the pointer pQueryPerformanceFrequency
// should be initialized as follows:
//
// BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpPerformanceFrequency)=OEMQueryPerformanceFrequency;
//
//------------------------------------------------------------------------------
BOOL
OEMQueryPerformanceFrequency(
LARGE_INTEGER *lpliPerformanceFreq
)
{
extern DWORD PerfCountFreq();
lpliPerformanceFreq->HighPart = 0;
lpliPerformanceFreq->LowPart = OEMTimerFreq;
return TRUE;
}
//-------------------------------------------------------------------------------
//-------------------------------------------------------------------------------
void SHxIncrCounterRegister (int nTicks)
{
#if (SH7770_REVISION == SH7770_1STCUT)
UCHAR *tstr;
#endif
// stop timer-0 count down
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr &= ~TMU0_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 &= ~TMU0_ENABLE;
#endif
// increment counter
pTmuTimer0->tcnt += nTicks;
// restart timer-0
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr |= TMU0_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 |= TMU0_ENABLE;
#endif
}
void SHxSetCounterRegister (int nTicks)
{
#if (SH7770_REVISION == SH7770_1STCUT)
UCHAR *tstr;
#endif
// stop timer-0 count down
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr &= ~TMU0_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 &= ~TMU0_ENABLE;
#endif
// update counter
pTmuTimer0->tcnt = nTicks;
// restart timer-0
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr |= TMU0_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 |= TMU0_ENABLE;
#endif
}
//-------------------------------------------------------------------------------
//-------------------------------------------------------------------------------
void SHxInitTimer (int nTicks)
{
#if (SH7770_REVISION == SH7770_1STCUT)
UCHAR *tstr;
#endif
DEBUGMSG(1, (TEXT("+SHxInitTimer\r\n")));
// stop all timers count down
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr = 0;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 = 0;
#endif
DEBUGMSG(1, (TEXT("TMU_TSTR0 0x%02X \r\n"), pTmuComReg->tstr0 ));
DEBUGMSG(1, (TEXT("TMU_TCR0 0x%08X \r\n"), pTmuTimer0->tcr ));
DEBUGMSG(1, (TEXT("TMU_TCOR0 0x%08X \r\n"), pTmuTimer0->tcor ));
DEBUGMSG(1, (TEXT("TMU_TCNT0 0x%08X \r\n"), pTmuTimer0->tcnt ));
// TMU0: underflow interrupt enable, divide by 16
pTmuTimer0->tcr = TMU_TCR_UNIE | TMU_TCR_TPSC_D16;
// initialize counter and constant
pTmuTimer0->tcor = nTicks;
pTmuTimer0->tcnt = nTicks;
// start timer 0
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr |= TMU0_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 |= TMU0_ENABLE;
#endif
DEBUGMSG(1, (TEXT("->TMU_TSTR0 0x%02X \r\n"), pTmuComReg->tstr0 ));
DEBUGMSG(1, (TEXT("->TMU_TCR0 0x%08X \r\n"), pTmuTimer0->tcr ));
DEBUGMSG(1, (TEXT("->TMU_TCOR0 0x%08X \r\n"), pTmuTimer0->tcor ));
DEBUGMSG(1, (TEXT("->TMU_TCNT0 0x%08X \r\n"), pTmuTimer0->tcnt ));
DEBUGMSG(1, (TEXT("TMU_TCR1 0x%08X \r\n"), pTmuTimer1->tcr ));
DEBUGMSG(1, (TEXT("TMU_TCOR1 0x%08X \r\n"), pTmuTimer1->tcor ));
DEBUGMSG(1, (TEXT("TMU_TCNT1 0x%08X \r\n"), pTmuTimer1->tcnt ));
// TMU1: underflow interrupt enable, divide by 4
pTmuTimer1->tcr = TMU_TCR_TPSC_D4;
// initialize counter and constant
pTmuTimer1->tcor = 0xffffffff;
pTmuTimer1->tcnt = 0xffffffff;
// start timer 1
#if (SH7770_REVISION == SH7770_1STCUT)
tstr = (UCHAR *)DRV_GLOBAL_BASE + TSTR0_GLOBAL_OFFSET;
*tstr |= TMU1_ENABLE;
pTmuComReg->tstr0 = *tstr;
#else
pTmuComReg->tstr0 |= TMU1_ENABLE;
#endif
DEBUGMSG(1, (TEXT("->TMU_TSTR0 0x%02X \r\n"), pTmuComReg->tstr0 ));
DEBUGMSG(1, (TEXT("->TMU_TCR1 0x%08X \r\n"), pTmuTimer1->tcr ));
DEBUGMSG(1, (TEXT("->TMU_TCOR1 0x%08X \r\n"), pTmuTimer1->tcor ));
DEBUGMSG(1, (TEXT("->TMU_TCNT1 0x%08X \r\n"), pTmuTimer1->tcnt ));
DEBUGMSG(1, (TEXT("-SHxInitTimer\r\n")));
}
//-------------------------------------------------------------------------------
// Update reschedule time.
//-------------------------------------------------------------------------------
void SHxUpdateReschedTime (DWORD dwTime)
{
volatile DWORD dwNext = NextINTMSec;
int nNewCounter, nDiffTick, nDiffMSec = dwTime - LastINTMSec;
#ifdef DEBUG
DWORD dwPrev = LastINTMSec;
#endif
// if timer interrupts occurs, or within 1MS of the scheduled interrupt, just return
// TimerISR will take care of it.
if (((int) pTmuTimer0->tcnt < SHxCount1MS) || (pTmuTimer0->tcr & TMU_TCR_UNF) || (dwNext != NextINTMSec)) {
return;
}
// we know we're not going to be interrupted by timer within 1MS if we reach here.
DEBUGCHK (0 == shifted_tick);
// trying to set reschedule time prior or equal to LastINTMSec - this could happen if a thread is on its way to
// sleep while preempted before getting into the Sleep Queue
if (nDiffMSec < 0) {
nDiffMSec = 0;
} else if (nDiffMSec > nMaxSchedMSec) {
nDiffMSec = nMaxSchedMSec;
}
dwTime = LastINTMSec + nDiffMSec;
nDiffTick = (dwTime - NextINTMSec) * SHxCount1MS;
NextINTMSec = dwTime;
dwCounterBase += nDiffTick;
// calculation here:
// current_tick = NextINTMSec * SHxCount1MS - CounterRegister;
// tick_to_interrupt = dwTime * SHxCount1MS
// new_counter = ticks_to_interrupt - current_tick = (dwTime - NextINTMSec) * SHxCount1MS + CounterRegister;
nNewCounter = nDiffTick + pTmuTimer0->tcnt;
// update 'Next'
// shift tick if new counter will be too small
if (OEMMinTickDistance > nNewCounter) {
shifted_tick = OEMMinTickDistance - nNewCounter;
nDiffTick += shifted_tick;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -