📄 smc.c
字号:
// Copyright(C) Renesas Technology Corp. 1998-2005. All rights reserved.
//
// LAN91C111 Ether Debug Library for HS7751RSTC01H
//
// FILE : SMC.C
// CREATED : 2002.09.19
// MODIFIED : 2005.08.10
// AUTHOR : Renesas Technology Corp.
// HARDWARE : RENESAS ITS-DS7
// NOTES : Target OS is Microsoft(R) Windows(R) CE, version 4.0 or later.
// This Library is based on LAN91C96 Ether Debug Library in PB4.0.
// HISTORY :
// 2002.07.24
// - Released as LAN91C111 Ether Debug Library for HS7751RSTC01H by modifying
// LAN91C96 Ether Debug Library in PB4.0 reference drivers.
// 2002.09.19
// - Released for HS7751RSTC01H as Ver. 1.0.0
// 2005.08.10
// - Modified SMCInit 2nd argument for OAL to production-qualiry OAL model.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Module Name:
Abstract:
Routines for the SMC111 ethernet controller used for the Windows CE
debug ethernet services, and bootloaders.
Functions:
Notes:
These routines are called at system init and other times when system calls aren't allowed, so
they can't make any system calls.
--*/
// Note : The Odo SMC implementation sometimes encounters read errors if we
// optimize this routine. So for now I'm just going to turn of all
// optimizations.
#pragma optimize("", off)
#include <windows.h>
#include <halether.h>
#include "smchw.h"
#include "smcsw.h"
#include <udp.h>
// The base address of the SMC registers. Also, allow for a multiplier, since the Odo
// platform uses 32 bit accesses of the registers.
static BYTE volatile *pbEthernetBase;
static DWORD dwRegisterMultiplier=1;
#define ReadWord( wOffset ) READ_PORT_USHORT((PUSHORT)(pbEthernetBase + (wOffset*dwRegisterMultiplier)))
#define WriteWord( wOffset, Value ) WRITE_PORT_USHORT((PUSHORT)(pbEthernetBase + (wOffset*dwRegisterMultiplier)),(USHORT)(Value))
// If this is defined, broadcast frames will be discarded. Since we need to process
// ARPs, leave broadcast filter off, and filter out packets as soon as we can. This, since
// we have to take an interrupt anyway, looking at the first few bytes isn't that bad. If
// the SMC chip could be configured so that we didn't even get interrupts for broadcast
// packets, we might look at updating the ARP cache on the desktop and filtering out all
// broadcasts...
#define NO_BROADCAST 0
#define BROADCAST_FILTER_BIT 0x4000
// If any of the following bits are set in the received status word, discard frame
#if NO_BROADCAST
#define FRAME_FILTER (0xAC00 | BROADCAST_FILTER_BIT) // No broadcast
#else
#define FRAME_FILTER 0xAC00 // Allow broadcast
#endif
// For debugging, if defined, this will cause all Rx/Tx data to be dumped to debug serial port
#undef SMC_DUMP_FRAMES
// Mask to use for interrupts
static UINT16 wIntMask;
// Controls whether we filter out broadcast packets (except ARP requests...)
static DWORD dwConfigOptions;
static void SendFrameError( char *pszPrefix, UINT16 wCompletionCode );
#ifdef SMC_DUMP_FRAMES
static void DumpEtherFrame( BYTE *pFrame, WORD cwFrameLength );
#endif
void PHYDiag();
void WRITE_PHY(unsigned char address, unsigned short data);
unsigned short READ_PHY(unsigned char address);
void SendData0();
void SendData1();
void SendDataZ();
void PHYDiag()
{
//Reset Phy module.
WRITE_PHY( PHYCONTROL_REG,0x8000);
while ((READ_PHY( PHYCONTROL_REG )&0x8000));
EdbgOutputDebugString("LAN91C111 diagnostic testing...");
if( (0x16 == READ_PHY(PHYID_REG1)) && (0xF840 == READ_PHY(PHYID_REG2))) {
EdbgOutputDebugString("completed.\r\n");
} else {
EdbgOutputDebugString("LAN failed.\r\n");
while(1);
}
}
void AutoNegotiation()
{
unsigned short capability;
unsigned long AutoNegotiationTimeOver;
EdbgOutputDebugString("Try Auto Negotiation.......");
WriteWord(BANKSEL_REG , BANK0 );
WriteWord( RPCR_REG, 0x0800 );
AutoNegotiationTimeOver = 0;
capability =0;
WRITE_PHY( PHYCONTROL_REG,0x1000);
while ( !(READ_PHY( STATUS_REG )&0x0020)) {
if( AutoNegotiationTimeOver == 0x8000 ) {
EdbgOutputDebugString("time out.\r\n");
WRITE_PHY( MASK_REG, 0x3FC0);
capability = 1;
break;
}
WRITE_PHY( PHYCONTROL_REG,0x1000);
AutoNegotiationTimeOver++;
}
if ( capability !=1 )
EdbgOutputDebugString("completed.\r\n");
if (!(capability))
capability = READ_PHY(AN_REC_REG);
WRITE_PHY( PHYCONTROL_REG,0x0000);
if( capability & 0x0200) {
EdbgOutputDebugString("100Base-T4 capable.\r\n");
EdbgOutputDebugString("We will not support 100Base-T4.\r\n");
}
if( capability & 0x0100) {
EdbgOutputDebugString("100Base-TX Full Duplex capable.\r\n");
WRITE_PHY( PHYCONTROL_REG,0x2100);
WriteWord( BANKSEL_REG , BANK0 );
WriteWord( TCR_REG, 0x8881 );
WriteWord( RPCR_REG, 0x30D4 );
}
else if( capability & 0x0080) {
EdbgOutputDebugString("100Base-TX Half Duplex capable.\r\n");
WRITE_PHY(PHYCONTROL_REG,0x2000);
WriteWord(BANKSEL_REG , BANK0 );
WriteWord( TCR_REG, 0x0081 );
WriteWord( RPCR_REG, 0x20D4 );
}
else if( capability & 0x0040) {
EdbgOutputDebugString("10Base-T Full Duplex capable.\r\n");
WRITE_PHY(PHYCONTROL_REG,0x0100);
WriteWord(BANKSEL_REG , BANK0 );
WriteWord( TCR_REG, 0x8881 );
WriteWord( RPCR_REG, 0x10C8 );
}
else if( capability & 0x0020) {
EdbgOutputDebugString("10Base-T Half Duplex capable.\r\n");
WRITE_PHY(PHYCONTROL_REG,0x0000);
WriteWord(BANKSEL_REG , BANK0 );
WriteWord( TCR_REG, 0x0081 );
WriteWord( RPCR_REG, 0x00C8 );
}
else {
EdbgOutputDebugString("Wait for partner in the state of AutoNegotiaton.\r\n");
READ_PHY(STATUS_OUTPUT_REG);
}
}
void WRITE_PHY(unsigned char address, unsigned short data)
{
int i;
unsigned char adr;
unsigned short dat;
adr = address;
dat = data;
for ( i=0; i<32; i++) SendData1();
//start bits
SendData0();
SendData1();
//write command
SendData0();
SendData1();
//PHY address
for ( i=0; i<5; i++) SendData0();
//PHY reg.
for ( i=0; i<5; i++) {
if(adr & (0x10>>i))
SendData1();
else
SendData0();
}
// TA
SendData1();
SendData0();
//write data
for ( i=0; i<16; i++) {
if(dat & (0x8000>>i))
SendData1();
else
SendData0();
}
}
unsigned short READ_PHY(unsigned char address)
{
unsigned short ret,temp;
int i;
unsigned char adr;
adr = address;
for ( i=0; i<32; i++) SendData1();
//start bits
SendData0();
SendData1();
//read command
SendData1();
SendData0();
//PHY address
for ( i=0; i<5; i++) SendData0();
//PHY reg.
for ( i=0; i<5; i++) {
if(adr & (0x10>>i))
SendData1();
else
SendData0();
}
// TA Z0h
SendDataZ();
SendData0();
// Read data
temp=0;
ret=0;
for ( i=0; i<16; i++) {
WriteWord(MGMT_REG , 0x3330 );
temp = ReadWord(MGMT_REG);
temp = (temp & 0x0002)>>1;
ret |= (temp <<(15-i));
WriteWord(MGMT_REG , 0x3334 );
}
return ret;
}
void SendData0()
{
WriteWord(BANKSEL_REG , BANK3 );
WriteWord(MGMT_REG , 0x3338 );
WriteWord(MGMT_REG , 0x333C );
WriteWord(MGMT_REG , 0x3338 );
}
void SendData1()
{
WriteWord(BANKSEL_REG , BANK3 );
WriteWord(MGMT_REG , 0x3339 );
WriteWord(MGMT_REG , 0x333D );
WriteWord(MGMT_REG , 0x3339 );
}
void SendDataZ()
{
WriteWord(BANKSEL_REG , BANK3 );
WriteWord(MGMT_REG , 0x3330 );
WriteWord(MGMT_REG , 0x3334 );
WriteWord(MGMT_REG , 0x3330 );
}
// This is called to initialze the ethernet low level driver. The base address of the ethernet hardware
// is passed into the routine. The routine will return TRUE for a successful initialization.
BOOL
//SMCInit( BYTE *pbBaseAddress, DWORD dwMultiplier, USHORT MacAddr[3])
SMCInit( BYTE *pbBaseAddress, DWORD offset, USHORT MacAddr[3])
{
DWORD dwStartTime;
USHORT wBSR;
if (! pbBaseAddress)
return FALSE;
pbEthernetBase = pbBaseAddress;
// dwRegisterMultiplier = dwMultiplier;
// Should be RESET!
WriteWord( BANKSEL_REG, BANK0 );// Bank 0
WriteWord( RCR_REG, 0x8000 );// MAC Reset
dwStartTime = OEMEthGetSecs();
while( OEMEthGetSecs() - dwStartTime < 2);// Wait 500ms
WriteWord( RCR_REG, 0x0000 );// Write to 0x0000
// MMU Reset
WriteWord( BANKSEL_REG, BANK2 );// Bank 2
WriteWord( MMUCOMMAND_REG, 0x0040 );// Write to MMU 0x0040
while(ReadWord(MMUCOMMAND_REG) & MMU_CMD_BUSY);// Wait BUSY bit = 0
PHYDiag();// PHY Reset
while( OEMEthGetSecs() - dwStartTime < 2);// Wait 1500ms
// DANGER - May have to wait 750 usec after reset while EEPROM info loads (Pg 50 of the SMC91C94 spec).
// until this occurs, SMC registers are inaccessible.
EdbgOutputDebugString("+SMCInit\r\n");
WriteWord( BANKSEL_REG, BANK1 );
dwStartTime = OEMEthGetSecs();
while( ReadWord( CONTROL_REG ) & 0x0003 && OEMEthGetSecs() - dwStartTime < 2);
// Verify the I/O base. The upper byte of the BSR always reads 0x33, use this.
// For Odo, the bus cycles will time out and garbage values will be returned.
wBSR = ReadWord(BANKSEL_REG);
if ((wBSR & 0xFF00) != 0x3300) {
EdbgOutputDebugString("SMC card not detected, I/O base 0x%X, BSR: 0x%X\n",pbEthernetBase,wBSR);
return FALSE;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -