📄 alg093.c
字号:
/*
* INVERSE POWER METHOD ALGORITHM 9.3
*
* To approximate an eigenvalue and an associated eigenvector of the
* n by n matrix A given a nonzero vector x:
*
* INPUT: Dimension n; matrix A; vector x; tolerance TOL;
* maximum number of iterations N.
*
* OUTPUT: Approximate eigenvalue MU; approximate eigenvector x
* or a message that the maximum number of iterations was
* exceeded.
*/
#include<stdio.h>
#include<math.h>
#define ZERO 1.0E-20
#define true 1
#define false 0
double absval(double);
void INPUT(int *, double [][10], double *, double *, int *, int *, double *);
void OUTPUT(FILE **);
void MULTIP(int, int *, int *, double *, double [][10]);
void SOLVE(int, double *, double [][10], double *, int *);
main()
{
double A[10][10], X[10], Y[10], B[10];
int NROW[10];
double T,AMAX,YMU,ERR,TOL,Q,S;
int N,I,J,NN,K,LP,OK;
char AA;
FILE *OUP[1];
INPUT(&OK, A, X, Y, &N, &NN, &TOL);
if (OK) {
OUTPUT(OUP);
/* STEP 1 */
/* Q could be input instead of computed by deleting
the next 7 steps */
Q = 0.0;
S = 0.0;
for (I=1; I<=N; I++) {
S = S + X[I-1] * X[I-1];
for (J=1; J<=N; J++) Q = Q + A[I-1][J-1] * X[I-1] * X[J-1];
}
Q = Q / S;
printf("Q is %.8e\n", Q);
printf("Input new Q? Enter Y or N.\n");
scanf("\n%c", &AA);
if ((AA == 'Y') || (AA == 'y')) {
printf("input new Q\n");
scanf("%lf", &Q);
}
fprintf(*OUP, "Iteration Eigenvalue Eigenvector\n");
/* STEP 2 */
K = 1;
for (I=1; I<=N; I++) A[I-1][I-1] = A[I-1][I-1] - Q;
/* Call subroutine to compute multipliers M(I,J) and
upper triangular matrix for matrix A using Gauss
elimination with partial pivoting.
NROW holds the ordering of rows for interchanges */
MULTIP(N, &OK, NROW, &Q, A);
if (OK) {
/* STEP 3 */
LP = 1;
for (I=2; I<=N; I++)
if (absval(X[I-1]) > absval(X[LP-1])) LP = I;
/* STEP 4 */
AMAX = X[LP-1];
for (I=1; I<=N; I++) X[I-1] = X[I-1] / (AMAX);
/* STEP 5 */
while ((K <= NN) && OK) {
/* STEPS 6 AND 7 */
for (I=1; I<=N; I++) B[I-1] = X[I-1];
/* Subroutine solve returns the solution of
( A - Q * I )Y = B in Y */
SOLVE(N, B, A, Y, NROW);
/* STEP 8 */
YMU = Y[LP-1];
/* STEP 9 AND 10 */
LP = 1;
for (I=2; I<=N; I++)
if (absval(Y[I-1]) > absval(Y[LP-1])) LP = I;
AMAX = Y[LP-1];
ERR = 0.0;
for (I=1; I<=N; I++) {
T = Y[I-1] / AMAX;
if (absval(X[I-1] - T) > ERR)
ERR = absval(X[I-1] - T);
X[I-1] = T;
}
YMU = 1 / YMU + Q;
/* STEP 11 */
fprintf(*OUP, "%3d %12.8f\n", K, YMU);
for (I=1; I<=N; I++) fprintf(*OUP, " %11.8f", X[I-1]);
fprintf(*OUP, "\n");
if (ERR < TOL) {
OK = false;
fprintf(*OUP, "Eigenvalue = %12.8f", YMU);
fprintf(*OUP, " to tolerance = %.10e\n", TOL);
fprintf(*OUP, "obtained on iteration number %d\n\n", K);
fprintf(*OUP, "Unit eigenvector is :\n");
for (I=1; I<=N; I++) fprintf(*OUP, " %11.8f", X[I-1]);
fprintf(*OUP, "\n");
}
else
/* STEP 12 */
K++;
}
if (K > NN) fprintf(*OUP,
"No convergence in %d iterations\n",NN);
}
fclose(*OUP);
}
return 0;
/* STEP 13 */
}
void INPUT(int *OK, double A[][10], double *X, double *Y, int *N, int *NN, double *TOL)
{
int I, J, FLAG;
char AA;
char NAME[30];
FILE *INP;
printf("This is the Inverse Power Method.\n");
*OK = false;
printf("The array will be input from a text file in the order:\n");
printf("A(1,1), A(1,2), ..., A(1,n), A(2,1), A(2,2), ..., A(2,n),\n");
printf("..., A(n,1), A(n,2), ..., A(n,n)\n\n\n");
printf("Place as many entries as desired on each line, but separate ");
printf("entries with\n");
printf("at least one blank.\n");
printf("The initial approximation should follow in same format.\n\n\n");
printf("Has the input file been created? - enter Y or N.\n");
scanf("%c",&AA);
if ((AA == 'Y') || (AA == 'y')) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:DATA.DTA\n");
scanf("%s", NAME);
INP = fopen(NAME, "r");
*OK = false;
while (!(*OK)) {
printf("Input the dimension n.\n");
scanf("%d", N);
if (*N > 0) {
for (I=1; I<=*N; I++)
for (J=1; J<=*N; J++) fscanf(INP, "%lf", &A[I-1][J-1]);
for (I=1; I<=*N; I++) fscanf(INP, "%lf", &X[I-1]);
fclose(INP);
while (!(*OK)) {
printf("Input the tolerance.\n");
scanf("%lf", TOL);
if (*TOL > 0.0) *OK = true;
else printf("Tolerance must be positive number.\n");
}
*OK = false;
while (!(*OK)) {
printf("Input maximum number of iterations ");
printf("- integer.\n");
scanf("\n%d", NN);
/* Use NN for N */
if (*NN > 0) *OK = true;
else printf("Number must be positive integer.\n");
}
}
else printf("The dimension must be a positive integer.\n");
}
}
else printf("The program will end so the input file can be created.\n");
}
void OUTPUT(FILE **OUP)
{
int FLAG;
char NAME[30];
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2.\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example A:OUTPUT.DTA\n");
scanf("%s", NAME);
*OUP = fopen(NAME, "w");
}
else *OUP = stdout;
fprintf(*OUP, "INVERSE POWER METHOD\n\n");
}
void MULTIP(int N, int *OK, int *NROW, double *Q, double A[][10])
/* Procedure MULTIP determines the row ordering and multipliers
for the matrix A - Q*I for use in Gaussian elimination with
Partial Pivoting. */
{
int K,I,M,IMAX,J,IP,L1,L2,JJ,I1,J1,N1;
for (I=1; I<=N; I++) NROW[I-1] = I;
*OK = true;
I = 1;
M = N - 1;
while ((I <= M) && OK) {
IMAX = I;
J = I + 1;
for (IP=J; IP<=N; IP++) {
L1 = NROW[IMAX-1];
L2 = NROW[IP-1];
if (absval(A[L2-1][I-1]) > absval(A[L1-1][I-1])) IMAX = IP;
}
if (absval(A[NROW[IMAX-1]-1][I-1]) <= ZERO) {
*OK = false;
printf("'A - Q * I is singular, Q = %.8e is an eigenvalue\n", *Q);
}
else {
JJ = NROW[I-1];
NROW[I-1] = NROW[IMAX-1];
NROW[IMAX-1] = JJ;
I1 = NROW[I-1];
for (JJ=J; JJ<=N; JJ++) {
J1 = NROW[JJ-1];
A[J1-1][I-1] = A[J1-1][I-1] / A[I1-1][I-1];
for (K=J; K<=N; K++)
A[J1-1][K-1] = A[J1-1][K-1] - A[J1-1][I-1] * A[I1-1][K-1];
}
}
I++;
}
if (absval(A[NROW[N-1]-1][N-1]) <= ZERO) {
*OK = false;
printf("A - Q * I is singular, Q = %.8e is an eigenvalue\n", *Q);
}
}
void SOLVE(int N, double *B, double A[][10], double *Y, int *NROW)
/* Procedure SOLVE solves the linear system (A - Q*I) Y = X
given a new vector X and the row ordering and multipliers form
procedure MULTIP */
{
int M,I,J,I1,JJ,J1,N1,N2,L,K,KK;
M = N - 1;
for (I=1; I<=M; I++) {
J = I + 1;
I1 = NROW[I-1];
for (JJ=J; JJ<=N; JJ++) {
J1 = NROW[JJ-1];
B[J1-1] = B[J1-1] - A[J1-1][I-1] * B[I1-1];
}
}
N1 = NROW[N-1];
Y[N-1] = B[N1-1] / A[N1-1][N-1];
L = N - 1;
for (K=1; K<=L; K++) {
J = L - K + 1;
JJ = J + 1;
N2 = NROW[J-1];
Y[J-1] = B[N2-1];
for (KK=JJ; KK<=N; KK++) Y[J-1] = Y[J-1] - A[N2-1][KK-1] * Y[KK-1];
Y[J-1] = Y[J-1] / A[N2-1][J-1];
}
}
/* Absolute Value Function */
double absval(double val)
{
if (val >= 0) return val;
else return -val;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -