📄 alg124.c
字号:
/*
* WAVE EQUATION FINITE-DIFFERENCE ALGORITHM 12.4
*
* To approximate the solution to the wave equation:
* subject to the boundary conditions
* u(0,t) = u(l,t) = 0, 0 < t < T = max t
* and the initial conditions
* u(x,0) = F(x) and Du(x,0)/Dt = G(x), 0 <= x <= l:
*
* INPUT: endpoint l; maximum time T; constant ALPHA; integers m, N.
*
* OUTPUT: approximations W(I,J) to u(x(I),t(J)) for each I = 0, ..., m
* and J=0,...,N.
*/
#include<stdio.h>
#include<math.h>
#define pi 4*atan(1)
#define true 1
#define false 0
double F(double X);
double G(double X);
void INPUT(int *, double *, double *, double *, int *, int *);
void OUTPUT(double, double, int, double [][21], double, int);
main()
{
double W[21][21];
double FT,FX,ALPHA,H,K,V,X;
int N,M,M1,M2,N1,N2,I,J,OK;
INPUT(&OK, &FX, &FT, &ALPHA, &N, &M);
if (OK) {
M1 = M + 1;
M2 = M - 1;
N1 = N + 1;
N2 = N - 1;
/* STEP 1 */
/* V is used for lambda */
H = FX / M;
K = FT / N;
V = ALPHA * K / H;
/* STEP 2 */
for (J=2; J<=N1; J++) {
W[0][J-1] = 0.0;
W[M1-1][J-1] = 0.0;
}
/* STEP 3 */
W[0][0] = F( 0.0 );
W[M1-1][0] = F ( FX );
/* STEP 4 */
for (I=2; I<=M; I++) {
W[I-1][0] = F( H * ( I - 1.0 ) );
W[I-1][1] = (1.0-V*V)*F(H*(I-1.0))+V*V*(F(I*H)+
F(H*(I-2.0)))/2.0+K*G(H*(I-1.0));
}
/* STEP 5 */
for (J=2; J<=N; J++)
for (I=2; I<=M; I++)
W[I-1][J] = 2.0*(1.0-V*V)*W[I-1][J-1]+V*V*
(W[I][J-1]+W[I-2][J-1])-W[I-1][J-2];
/* STEP 6 */
OUTPUT(FT, X, M1, W, H, N1);
}
/* STEP 7 */
return 0;
}
/* Change F for a new problem */
double F(double X)
{
double f;
f = sin(pi * X);
return f;
}
/* Change function G for a new problem */
double G(double X)
{
double g;
g = 0.0;
return g;
}
void INPUT(int *OK, double *FX, double *FT, double *ALPHA, int *N, int *M)
{
int FLAG;
char AA;
printf("This is the Finite-Difference Method for the Wave Equation.\n");
printf("Have the functions F and G been created immediately\n");
printf("preceding the INPUT function? Answer Y or N.\n");
scanf("\n%c", &AA);
if ((AA == 'Y') || (AA == 'y')) {
printf("The lefthand endpoint on the X-axis is 0.\n");
*OK =false;
while (!(*OK)) {
printf("Input the righthand endpoint on the X-axis.\n");
scanf("%lf", FX);
if (*FX <= 0.0)
printf("Must be a positive number.\n");
else *OK = true;
}
*OK = false;
while (!(*OK)) {
printf("Input the maximum value of the time variable T.\n");
scanf("%lf", FT);
if (*FT <= 0.0)
printf("Must be a positive number.\n");
else *OK = true;
}
printf("Input the constant alpha.\n");
scanf("%lf", ALPHA);
*OK = false;
while (!(*OK)) {
printf("Input integer m = number of intervals on X-axis\n");
printf("and N = number of time intervals - separated by a blank.\n");
printf("Note that m must be 3 or larger.\n");
scanf("%d %d", M, N);
if ((*M <= 2) || (*N <= 0))
printf("Numbers are not within correct range.\n");
else *OK = true;
}
}
else {
printf("The program will end so that the functions ");
printf("F and G can be created.\n");
*OK = false;
}
}
void OUTPUT(double FT, double X, int M1, double W[][21], double H, int N1)
{
int I, J, FLAG;
char NAME[30];
FILE *OUP;
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2.\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:OUTPUT.DTA\n");
scanf("%s", NAME);
OUP = fopen(NAME, "w");
}
else OUP = stdout;
fprintf(OUP, "FINITE DIFFERENCE METHOD FOR THE WAVE EQUATION\n\n");
fprintf(OUP, " I X(I) W(X(I),%12.6e)\n", FT);
for (I=1; I<=M1; I++) {
X = (I - 1.0) * H;
fprintf(OUP, "%3d %11.8f %13.8f\n", I, X, W[I-1][N1-1]);
}
fclose(OUP);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -