📄 alg053.c
字号:
/*
* RUNGE-KUTTA-FEHLBERG ALGORITHM 5.3
*
* TO APPROXIMATE THE SOLUTION OF THE INITIAL VALUE PROBLEM:
* Y' = F(T,Y), A<=T<=B, Y(A) = ALPHA,
* WITH LOCAL TRUNCATION ERROR WITHIN A GIVEN TOLERANCE.
*
* INPUT: ENDPOINTS A,B; INITIAL CONDITION ALPHA; TOLERANCE TOL;
* MAXIMUM STEPSIZE HMAX; MINIMUM STEPSIZE HMIN.
*
* OUTPUT: T, W, H WHERE W APPROXIMATES Y(T) AND STEPSIZE H WAS
* USED OR A MESSAGE THAT MINIMUM STEPSIZE WAS EXCEEDED.
*/
#include<stdio.h>
#include<math.h>
#define true 1
#define false 0
main()
{
double A,B,TOL,ALPHA,HMAX,HMIN,H,T,W,K1,K2,K3,K4,K5,K6,R,DELTA;
int I,N,OK;
FILE *OUP[1];
double absval(double);
double F(double, double);
void INPUT(int *, double *, double *, double *, double *L, double *, double *, int *);
void OUTPUT(FILE **);
INPUT(&OK, &A, &B, &ALPHA, &TOL, &HMIN, &HMAX, &N);
if (OK) {
OUTPUT(OUP);
/* STEP 1 */
H = HMAX;
T = A;
W = ALPHA;
fprintf(*OUP, "%12.7f %11.7f 0 0\n", T, W);
OK = true;
/* STEP 2 */
while ((T < B) && OK) {
/* STEP 3 */
K1 = H*F(T,W);
K2 = H*F(T+H/4,W+K1/4);
K3 = H*F(T+3*H/8,W+(3*K1+9*K2)/32);
K4 = H*F(T+12*H/13,W+(1932*K1-7200*K2+7296*K3)/2197);
K5 = H*F(T+H,W+439*K1/216-8*K2+3680*K3/513-845*K4/4104);
K6 = H*F(T+H/2,W-8*K1/27+2*K2-3544*K3/2565
+1859*K4/4104-11*K5/40);
/* STEP 4 */
R = absval(K1/360-128*K3/4275-2197*K4/75240.0
+K5/50+2*K6/55)/H;
/* STEP 5 */
if (R <= TOL) {
/* STEP 6 */
/* APPROXIMATION ACCEPTED */
T = T + H;
W = W+25*K1/216+1408*K3/2565+2197*K4/4104-K5/5;
/* STEP 7 */
fprintf(*OUP, "%12.7f %11.7f %11.7f %11.7f\n", T, W, H, R);
}
/* STEP 8 */
/* TO AVOID UNDERFLOW */
if (R > 1.0E-20) DELTA = 0.84 * exp(0.25 * log(TOL / R));
else DELTA = 10.0;
/* STEP 9 */
/* CALCULATE NEW H */
if (DELTA <= 0.1) H = 0.1 * H;
else {
if (DELTA >= 4.0) H = 4.0 * H;
else H = DELTA * H;
}
/* STEP 10 */
if (H > HMAX) H = HMAX;
/* STEP 11 */
if (H < HMIN) OK = false;
else {
if (T+H > B)
if (absval(B-T) < TOL) T = B;
else H = B - T;
}
}
if (!OK) fprintf(*OUP, "Minimal H exceeded\n");
/* STEP 12 */
/* PROCESS IS COMPLETE */
fclose(*OUP);
}
return 0;
}
/* Change function F for a new problem */
double F(double T, double Y)
{
double f;
f = Y - T*T + 1.0;
return f;
}
void INPUT(int *OK, double *A, double *B, double *ALPHA, double *TOL, double *HMIN, double *HMAX, int *N)
{
double X;
char AA;
printf("This is the Runge-Kutta-Fehlberg Method.\n");
*OK = false;
printf("Has the function F been defined?\n");
printf("Enter Y or N.\n");
scanf("%c",&AA);
if ((AA == 'Y') || (AA == 'y')) {
*OK = false;
while (!(*OK)) {
printf("Input left and right endpoints separated by blank\n");
scanf("%lf %lf", A, B);
if (*A >= *B)
printf("Left endpoint must be less than right endpoint\n");
else *OK = true;
}
printf("Input the initial condition\n");
scanf("%lf", ALPHA);
*OK = false;
while(!(*OK)) {
printf("Input tolerance\n");
scanf("%lf", TOL);
if (*TOL <= 0.0) printf("Tolerance must be positive.\n");
else *OK = true;
}
*OK = false;
while(!(*OK)) {
printf("Input minimum and maximum mesh spacing separated by a ");
printf("blank\n");
scanf("%lf %lf", HMIN, HMAX);
if ((*HMIN < *HMAX) && (*HMIN > 0.0)) *OK = true;
else {
printf("Minimum mesh spacing must be a positive real ");
printf("number and less than\n");
printf("the maximum mesh spacing\n");
}
}
}
else
printf("The program will end so that the functions can be created.\n");
}
void OUTPUT(FILE **OUP)
{
char NAME[30];
int FLAG;
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("A:OUTPUT.DTA\n");
scanf("%s", NAME);
*OUP = fopen(NAME, "w");
}
else *OUP = stdout;
fprintf(*OUP, "RUNGE-KUTTA-FEHLBERG METHOD\n\n");
fprintf(*OUP, " T(I) W(I) H R\n\n");
}
/* Absolute Value Function */
double absval(double val)
{
if (val >= 0) return val;
else return -val;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -