📄 alg121.c
字号:
/*
* POISSON EQUATION FINITE-DIFFERENCE ALGORITHM 12.1
*
* To approximate the solution to the Poisson equation
* DEL(u) = F(x,y), a <= x <= b, c <= y <= d,
* SUBJECT TO BOUNDARY CONDITIONS:
* u(x,y) = G(x,y),
* if x = a or x = b for c <= y <= d,
* if y = c or y = d for a <= x <= b
*
* INPUT: endpoints a, b, c, d; integers m, n; tolerance TOL;
* maximum number of iterations M
*
* OUTPUT: approximations W(I,J) to u(X(I),Y(J)) for each
* I = 1,..., n-1 and J=1,..., m-1 or a message that the
* maximum number of iterations was exceeded.
*/
#include<stdio.h>
#include<math.h>
#define true 1
#define false 0
double F(double X, double Y);
double G(double X, double Y);
double absval(double);
void INPUT(int *, double *, double *, double *, double *, int *, int *, double *, int *);
void OUTPUT(int, int, double *, double *, double [][26], int);
main()
{
double W[26][26], X[26], Y[26];
double TOL,A,B,C,D,H,K,V,VV,Z,E,ALPHA,BETA;
int M,N,NN,M1,M2,N1,N2,I,J,L,LL,OK;
INPUT(&OK, &A, &B, &C, &D, &M, &N, &TOL, &NN);
if (OK) {
M1 = M - 1;
M2 = M - 2;
N1 = N - 1;
N2 = N - 2;
/* STEP 1 */
H = (B - A) / N;
K = (D - C) / M;
/* STEPS 2 and 3 construct mesh points */
/* STEP 2 */
for (I=0; I<=N; I++) X[I] = A + I * H;
/* STEP 3 */
for (J=0; J<=M; J++) Y[J] = C + J * K;
/* STEP 4 */
for (I=1; I<=N1; I++) {
W[I][0] = G(X[I],Y[0]);
W[I][M] = G(X[I],Y[M]);
}
for (J=0; J<=M; J++) {
W[0][J] = G(X[0],Y[J]);
W[N][J] = G(X[N],Y[J]);
}
for (I=1; I<=N1; I++)
for (J=1; J<=M1; J++) W[I][J] = 0.0;
/* STEP 5 */
/* use V for lambda, VV for mu */
V = H * H / ( K * K );
VV = 2.0 * ( 1.0 + V );
L = 1;
OK = false;
/* Z is a new value of W(I,J) to be used in computing
the norm of the error E used in place of NORM */
/* STEP 6 */
while ((L <= NN) && (!OK)) {
/* STEPS 7 through 20 perform Gauss-Seidel iterations */
/* STEP 7 */
Z = (-H*H*F(X[1],Y[M1])+G(A,Y[M1])+V*
G(X[1],D)+V*W[1][M2]+W[2][M1])/VV;
E = absval( W[1][M1] - Z );
W[1][M1] = Z;
/* STEP 8 */
for (I=2; I<=N2; I++) {
Z = (-H*H*F(X[I],Y[M1])+V*G(X[I],D)+
W[I-1][M1]+W[I+1][M1]+V*W[I][M2])/VV;
if ( absval( W[I][M1] - Z ) > E )
E = abs( W[I][M1] - Z );
W[I][M1] = Z;
}
/* STEP 9 */
Z = (-H*H*F(X[N1],Y[M1])+G(B,Y[M1])+V*
G(X[N1],D)+W[N2][M1]+V*W[N1][M2])/VV;
if ( absval( W[N1][M1] - Z ) > E )
E = abs( W[N1][M1] - Z );
W[N1][M1] = Z;
/* STEP 10 */
for (LL=2; LL<=M2; LL++) {
J = M2 - LL + 2;
/* STEP 11 */
Z = (-H*H*F(X[1],Y[J])+G(A,Y[J])+
V*W[1][J+1]+V*W[1][J-1]+W[2][J])/VV;
if ( absval( W[1][J] - Z ) > E )
E = absval( W[1][J] - Z );
W[1][J] = Z;
/* STEP 12 */
for (I=2; I<=N2; I++) {
Z = (-H*H*F(X[I],Y[J])+W[I-1][J]+
V*W[I][J+1]+V*W[I][J-1]+W[I+1][J])/VV;
if ( absval( W[I][J] - Z ) > E )
E = absval( W[I][J] - Z );
W[I][J] = Z;
}
/* STEP 13 */
Z = (-H*H*F(X[N1],Y[J])+G(B,Y[J])+
W[N2][J]+V*W[N1][J+1]+V*W[N1][J-1])/VV;
if ( absval( W[N1][J] - Z ) > E )
E = absval( W[N1][J] - Z );
W[N1][J] = Z;
}
/* STEP 14 */
Z = ( -H * H * F( X[1],Y[1] ) + V * G( X[1], C ) +
G( A, Y[1] ) + V * W[1][2] + W[2][1] ) / VV;
if ( absval( W[1][1] - Z ) > E )
E = absval( W[1][1] - Z );
W[1][1] = Z;
/* STEP 15 */
for (I=2; I<=N2; I++) {
Z = (-H*H*F(X[I],Y[1])+V*G(X[I],C)+
W[I+1][1]+W[I-1][1]+V*W[I][2])/VV;
if ( absval( W[I][1] - Z ) > E )
E = absval( W[I][1] - Z );
W[I][1] = Z;
}
/* STEP 16 */
Z = (-H*H*F(X[N1],Y[1])+V*G(X[N1],C)+
G(B,Y[1])+W[N2][1]+V*W[N1][2])/VV;
if ( absval( W[N1][1] - Z ) > E )
E = absval( W[N1][1] - Z );
W[N1][1] = Z;
/* STEP 17 */
if (E<=TOL) {
/* STEP 18 */
OUTPUT(N1, M1, X, Y, W, L);
/* STEP 19 */
OK = true;
}
else
/* STEP 20 */
L++;
}
/* STEP 21 */
if (L > NN)
printf("Method fails after iteration number %d\n", NN);
}
return 0;
}
/* Change F for a new problem */
double F(double X, double Y)
{
double f;
f = X*exp(Y);
return f;
}
/* Change G for a new problem */
double G(double X, double Y)
{
double g;
g = X*exp(Y);
return g;
}
void INPUT(int *OK, double *A, double *B, double *C, double *D, int *M, int *N, double *TOL, int *NN)
{
int I, FLAG;
char AA;
char NAME[30];
FILE *INP;
printf("This is the Finite-Difference Method for Elliptic Equations.\n");
*OK = false;
printf("Have the functions F(x,y) and G(x,y) been created\n");
printf("immediately preceding the INPUT procedure? Answer Y or N.\n");
scanf("\n%c", &AA);
if ((AA == 'Y') || (AA == 'y')) {
*OK =false;
while (!(*OK)) {
printf("Input endpoints of interval [A,B] on X-axis\n");
printf("separated by a blank.\n");
scanf("%lf %lf", A, B);
printf("Input endpoints of interval [C,D] on Y-axis\n");
printf("separated by a blank.\n");
scanf("%lf %lf", C, D);
if ((*A >= *B) || (*C >= *D))
printf("Left endpoint must be less than right endpoint.\n");
else *OK = true;
}
*OK = false;
while (!(*OK)) {
printf("Input number of intervals n on the X-axis and m\n");
printf("on the Y-axis separated by a blank\n");
printf("Note that both n and m should be larger than 2.\n");
scanf("%d %d", N, M);
if ((*M <= 2) || (*N <= 2))
printf("Numbers must exceed 2.\n");
else *OK = true;
}
*OK = false;
while (!(*OK)) {
printf("Input the Tolerance.\n");
scanf("%lf", TOL);
if (*TOL <= 0.0)
printf("Tolerance must be positive.\n");
else *OK = true;
}
*OK = false;
while (!(*OK)) {
printf("Input the maximum number of iterations.\n");
scanf("%d", NN);
if (*NN <= 0)
printf ("Number must be a positive integer.\n");
else *OK = true;
}
}
else {
printf("The program will end so that the functions ");
printf("F and G can be created.\n");
*OK = false;
}
}
void OUTPUT(int N1, int M1, double *X, double *Y, double W[][26], int L)
{
int I, J, FLAG;
char NAME[30];
FILE *OUP;
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2.\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:OUTPUT.DTA\n");
scanf("%s", NAME);
OUP = fopen(NAME, "w");
}
else OUP = stdout;
fprintf(OUP, "POISSON EQUATION FINITE-DIFFERENCE METHOD\n\n");
fprintf(OUP, " I J X(I) Y(J) W(I,J)\n\n");
for (I=1; I<=N1; I++)
for (J=1; J<=M1; J++)
fprintf(OUP, "%3d %2d %11.8f %11.8f %13.8f\n", I, J, X[I], Y[J], W[I][J]);
fprintf(OUP, "Convergence occurred on iteration number: %d\n", L);
fclose(OUP);
}
/* Absolute Value Function */
double absval(double val)
{
if (val >= 0) return val;
else return -val;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -