📄 alg062.c
字号:
/*
* GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING ALGORITHM 6.2
*
* To solve the n by n linear system
*
* E1: A[1,1] X[1] + A[1,2] X[2] +...+ A[1,n] X[n] = A[1,n+1]
* E2: A[2,1] X[1] + A[2,2] X[2] +...+ A[2,n] X[n] = A[2,n+1]
* :
* .
* EN: A[n,1] X[1] + A[n,2] X[2] +...+ A[n,n] X[n] = A[n,n+1]
*
* INPUT: number of unknowns and equations n; augmented
* matrix A = (A(I,J)) where 1<=I<=n and 1<=J<=n+1.
*
* OUTPUT: solution x(1), x(2),...,x(n) or a message that the
* linear system has no unique solution.
*/
#include<stdio.h>
#include<math.h>
#define ZERO 1.0E-20
#define true 1
#define false 0
double absval(double);
void INPUT(int *, double [][11], int *);
void OUTPUT(int, int, int, int *, double *, double [][11]);
main()
{
double A[10][11], X[10];
double AMAX,XM,SUM;
int NROW[10];
int N,M,ICHG,I,NN,IMAX,J,JJ,IP,JP,NCOPY,I1,J1,N1,K,N2,LL,KK,OK;
INPUT(&OK, A, &N);
if (OK) {
M = N + 1;
/* STEP 1 */
for (I=1; I<=N; I++) NROW[I-1] = I;
/* initialize row pointer */
NN = N - 1;
ICHG = 0;
I = 1;
/* STEP 2 */
while ((OK) && (I <= NN)) {
/* STEP 3 */
IMAX = NROW[I-1];
AMAX = absval(A[IMAX-1][I-1]);
IMAX = I;
JJ = I + 1;
for (IP=JJ; IP<=N; IP++) {
JP = NROW[IP-1];
if (absval(A[JP-1][I-1]) > AMAX) {
AMAX = absval(A[JP-1][I-1]);
IMAX = IP;
}
}
/* STEP 4 */
if (AMAX <= ZERO) OK = false;
else {
/* STEP 5 */
/* simulate row interchange */
if ( NROW[I-1] != NROW[IMAX-1]) {
ICHG = ICHG + 1;
NCOPY = NROW[I-1];
NROW[I-1] = NROW[IMAX-1];
NROW[IMAX-1] = NCOPY;
}
I1 = NROW[I-1];
/* STEP 6 */
for (J=JJ; J<=N; J++) {
J1 = NROW[J-1];
/* STEP 7 */
XM = A[J1-1][I-1] / A[I1-1][I-1];
/* STEP 8 */
for (K=JJ; K<=M; K++)
A[J1-1][K-1] = A[J1-1][K-1] - XM * A[I1-1][K-1];
/* Multiplier XM could be saved in A[J1-1,I-1] */
A[J1-1][I-1] = 0.0;
}
}
I++;
}
if (OK) {
/* STEP 9 */
N1 = NROW[N-1];
if (absval(A[N1-1][N-1]) <= ZERO) OK = false;
/* system has no unique solution */
else {
/* STEP 10 */
/* start backward substitution */
X[N-1] = A[N1-1][M-1] / A[N1-1][N-1];
/* STEP 11 */
for (K=1; K<=NN; K++) {
I = NN - K + 1;
JJ = I + 1;
N2 = NROW[I-1];
SUM = 0.0;
for (KK=JJ; KK<=N; KK++) {
SUM = SUM - A[N2-1][KK-1] * X[KK-1];
}
X[I-1] = (A[N2-1][N] + SUM) / A[N2-1][I-1];
}
/* STEP 12 */
/* procedure completed successfully */
OUTPUT(N, M, ICHG, NROW, X, A);
}
}
if (!OK) printf("System has no unique solution\n");
}
return 0;
}
void INPUT(int *OK, double A[][11], int *N)
{
int I, J, FLAG;
char AA;
char NAME[30];
FILE *INP;
printf("This is Gauss Elimination with Partial Pivoting.\n");
printf("The array will be input from a text file in the order:\n");
printf("A(1,1), A(1,2), ..., A(1,N+1), A(2,1), A(2,2), ..., A(2,N+1),\n");
printf("..., A(N,1), A(N,2), ..., A(N,N+1)\n\n");
printf("Place as many entries as desired on each line, but separate ");
printf("entries with\n");
printf("at least one blank.\n\n\n");
printf("Has the input file been created? - enter Y or N.\n");
scanf("%c",&AA);
if ((AA == 'Y') || (AA == 'y')) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:DATA.DTA\n");
scanf("%s", NAME);
INP = fopen(NAME, "r");
*OK = false;
while (!(*OK)) {
printf("Input the number of equations - an integer.\n");
scanf("%d", N);
if (*N > 0) {
for (I=1; I<=*N; I++) {
for (J=1; J<=*N+1; J++) fscanf(INP, "%lf", &A[I-1][J-1]);
fscanf(INP, "\n");
}
*OK = true;
fclose(INP);
}
else printf("The number must be a positive integer.\n");
}
}
else {
printf("The program will end so the input file can be created.\n");
*OK = false;
}
}
void OUTPUT(int N, int M, int ICHG, int *NROW, double *X, double A[][11])
{
int I, J, FLAG;
char NAME[30];
FILE *OUP;
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2.\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:OUTPUT.DTA\n");
scanf("%s", NAME);
OUP = fopen(NAME, "w");
}
else OUP = stdout;
fprintf(OUP, "GAUSSIAN ELIMINATION - PARTIAL PIVOTING\n\n");
fprintf(OUP, "The reduced system - output by rows:\n");
for (I=1; I<=N; I++) {
for (J=1; J<=N; J++) fprintf(OUP, " %11.8f", A[I-1][J-1]);
fprintf(OUP, "\n");
}
fprintf(OUP, "\n\nHas solution vector:\n");
for (I=1; I<=N; I++) {
fprintf(OUP, " %12.8f", X[I-1]);
}
fprintf (OUP, "\nwith %d row interchange(s)\n", ICHG);
fprintf(OUP, "\nThe rows have been logically re-ordered to:\n");
for (I=1; I<=N; I++) fprintf(OUP, " %2d", NROW[I-1]); fprintf(OUP,"\n");
fclose(OUP);
}
/* Absolute Value Function */
double absval(double val)
{
if (val >= 0) return val;
else return -val;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -