⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ekf.m

📁 是卡尔曼滤波算法的源代码
💻 M
字号:
function [xhat_data,Pmat]=ekf(kalmfilex,kalmfiley,linfile,xbar,...                P0,q,r,u,y,timeidx,optpar)% EKF%  This function is an implementation of the conventional%  extended Kalman filter (EKF).%  The filter estimates the states for nonlinear systems written in%  the general form:%               x(k+1) = f[x(k),u(k),v(k)]%               y(k)   = g[x(k),w(k)]%% Call: [xhat,Pmat]=ekf(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar) %% Input:%   xfunc   - Function containing the state equations.%   yfunc   - Function containing the output equations.%   linfunc - Function containing linearization procedure.%   x0      - Initial state vector.%   P0      - Initial covariance matrix (symmetric, nonnegative definite).%   q,r     - Covariance matrices for v and w, respectively.%   u       - Input signal. Dimension is [samples x inputs].%             Use [] if there are no inputs.%   y       - Output signal. Dimension is [observations x outputs].%   tidx    - Vector containing time stamps (in samples) for the %             observations in y.%   optpar  - Data structure containing optional parameters:%             .init : Initial parameters for 'xfile', 'yfile', and%                     'linfile' (use an arbitrary format).%% Output:%   xhat    - State estimates. Dimension is [samples+1 x states].%   Pmat    - Matrix where each row contains the upper triangular elements%             of the covariance matrix estimates. The dimension is %             [samples+1 x 0.5*states*(states+1)]. The individual covariance %             matrices can later be extracted with MAT2COV.%% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc' % containing state update, output equation, and linearization. The % function containing the state update should have the header % (the function name is arbitrary):%       function x=my_xfile(x,u,v)%% the function containing the output equation must have the header%       function y=my_yfile(x,w)%% while the function containing the linearization must have the header%      function [M,N]=my_linfile(x,u,vw,flag)% flag=0: Linearization of the state equation% flag=1: Linerization of the output equation.%  % In all three cases, an initialization of constant parameters can be % made using the parameter 'optpar.init'. This parameter is passed through% x if the functions are called with only one parameter.%% Written by Magnus Norgaard% LastEditDate: Nov. 9, 2001 % >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<if isempty(u),             % No inputs  nu = 0; samples = timeidx(end); uk1 = [];else  [samples,nu] = size(u);  % # of samples and inputsendny           = size(y,2);  % # of outputsnx           = size(P0,1); % # of statesnv           = size(q,1);  % # of process noise sourcesnw           = size(r,1);  % # of measurement noise sourcesif isempty(xbar),          % Set to x0=0 if not specified   xbar=zeros(nx,1);elseif length(xbar)~=nx,  error('Dimension mismatch between x0 and P0');endif size(y,1)~=size(timeidx,1)  error('Dimension mismatch between y and timeidx');endPxbar = P0;                % A priori estimate = initial covariancexhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesPmat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matricespidx      = find(tril(reshape(1:nx*nx,nx,nx))); % Index in Pyidx  = 1;                 % Index into y-vector % ----- Initialize state+output equations and linearization -----if nargin<11,              % No optional parameters passed   optpar = [];endif isfield(optpar,'init')  % Parameters for m-functions   initpar = optpar.init;else   initpar = [];endvmean = zeros(nv,1);       % Mean of process noisewmean = zeros(nw,1);       % Mean of measurement noisefeval(kalmfilex,initpar);  % Initialize state equationfeval(kalmfiley,initpar);  % Initialize output equationfeval(linfile,initpar);    % Initialize linearizationcounter = 0;               % Counts the progress of the filteringwaithandle=waitbar(0,'Filtering in progress');  % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples,  % --- Measurement update (a posteriori update) ---  ybar = feval(kalmfiley,xbar,wmean);  if (k<=timeidx(end) & timeidx(yidx)==k),    [C,G] = feval(linfile,xbar,[],wmean,1); % Linearization    if isempty(G),                      % Kalman gain       K = Pxbar*C'/(C*Pxbar*C'+r);     % Noise enters directly    else       K = Pxbar*C'/(C*Pxbar*C'+G*r*G');% General update    end    Px   = Pxbar-K*C*Pxbar;             % A posteriori covariance    xhat = xbar + K*(y(yidx,:)'-ybar);  % State estimate    yidx = yidx + 1;                    % Update index in time vector    % no observations available at this sampling time  else    xhat = xbar;                        % Copy a priori state estimate    Px   = Pxbar;                       % Copy a priori covariance factor  end  % --- Time update (a'priori update) of state and covariance ---  if k<samples,    if nu>0 uk1 = u(k+1,:)'; end    xbar=feval(kalmfilex,xhat,uk1,vmean);    % State update    [A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization    if isempty(F),                     % Covariance update       Pxbar = A*Px*A' + q;            % Noise enters directly    else       Pxbar = A*Px*A' + F*q*F';       % General update    end  end    % --- Store results ---  xhat_data(k+1,:) = xhat';  Pmat(k+1,:)      = Px(pidx)';    % --- How much longer? ---  if (counter+0.01<= k/samples),     counter = k/samples;     waitbar(k/samples,waithandle);  endendclose(waithandle);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -