📄 ekf.m
字号:
function [xhat_data,Pmat]=ekf(kalmfilex,kalmfiley,linfile,xbar,... P0,q,r,u,y,timeidx,optpar)% EKF% This function is an implementation of the conventional% extended Kalman filter (EKF).% The filter estimates the states for nonlinear systems written in% the general form:% x(k+1) = f[x(k),u(k),v(k)]% y(k) = g[x(k),w(k)]%% Call: [xhat,Pmat]=ekf(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar) %% Input:% xfunc - Function containing the state equations.% yfunc - Function containing the output equations.% linfunc - Function containing linearization procedure.% x0 - Initial state vector.% P0 - Initial covariance matrix (symmetric, nonnegative definite).% q,r - Covariance matrices for v and w, respectively.% u - Input signal. Dimension is [samples x inputs].% Use [] if there are no inputs.% y - Output signal. Dimension is [observations x outputs].% tidx - Vector containing time stamps (in samples) for the % observations in y.% optpar - Data structure containing optional parameters:% .init : Initial parameters for 'xfile', 'yfile', and% 'linfile' (use an arbitrary format).%% Output:% xhat - State estimates. Dimension is [samples+1 x states].% Pmat - Matrix where each row contains the upper triangular elements% of the covariance matrix estimates. The dimension is % [samples+1 x 0.5*states*(states+1)]. The individual covariance % matrices can later be extracted with MAT2COV.%% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc' % containing state update, output equation, and linearization. The % function containing the state update should have the header % (the function name is arbitrary):% function x=my_xfile(x,u,v)%% the function containing the output equation must have the header% function y=my_yfile(x,w)%% while the function containing the linearization must have the header% function [M,N]=my_linfile(x,u,vw,flag)% flag=0: Linearization of the state equation% flag=1: Linerization of the output equation.% % In all three cases, an initialization of constant parameters can be % made using the parameter 'optpar.init'. This parameter is passed through% x if the functions are called with only one parameter.%% Written by Magnus Norgaard% LastEditDate: Nov. 9, 2001 % >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<if isempty(u), % No inputs nu = 0; samples = timeidx(end); uk1 = [];else [samples,nu] = size(u); % # of samples and inputsendny = size(y,2); % # of outputsnx = size(P0,1); % # of statesnv = size(q,1); % # of process noise sourcesnw = size(r,1); % # of measurement noise sourcesif isempty(xbar), % Set to x0=0 if not specified xbar=zeros(nx,1);elseif length(xbar)~=nx, error('Dimension mismatch between x0 and P0');endif size(y,1)~=size(timeidx,1) error('Dimension mismatch between y and timeidx');endPxbar = P0; % A priori estimate = initial covariancexhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesPmat = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matricespidx = find(tril(reshape(1:nx*nx,nx,nx))); % Index in Pyidx = 1; % Index into y-vector % ----- Initialize state+output equations and linearization -----if nargin<11, % No optional parameters passed optpar = [];endif isfield(optpar,'init') % Parameters for m-functions initpar = optpar.init;else initpar = [];endvmean = zeros(nv,1); % Mean of process noisewmean = zeros(nw,1); % Mean of measurement noisefeval(kalmfilex,initpar); % Initialize state equationfeval(kalmfiley,initpar); % Initialize output equationfeval(linfile,initpar); % Initialize linearizationcounter = 0; % Counts the progress of the filteringwaithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples, % --- Measurement update (a posteriori update) --- ybar = feval(kalmfiley,xbar,wmean); if (k<=timeidx(end) & timeidx(yidx)==k), [C,G] = feval(linfile,xbar,[],wmean,1); % Linearization if isempty(G), % Kalman gain K = Pxbar*C'/(C*Pxbar*C'+r); % Noise enters directly else K = Pxbar*C'/(C*Pxbar*C'+G*r*G');% General update end Px = Pxbar-K*C*Pxbar; % A posteriori covariance xhat = xbar + K*(y(yidx,:)'-ybar); % State estimate yidx = yidx + 1; % Update index in time vector % no observations available at this sampling time else xhat = xbar; % Copy a priori state estimate Px = Pxbar; % Copy a priori covariance factor end % --- Time update (a'priori update) of state and covariance --- if k<samples, if nu>0 uk1 = u(k+1,:)'; end xbar=feval(kalmfilex,xhat,uk1,vmean); % State update [A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization if isempty(F), % Covariance update Pxbar = A*Px*A' + q; % Noise enters directly else Pxbar = A*Px*A' + F*q*F'; % General update end end % --- Store results --- xhat_data(k+1,:) = xhat'; Pmat(k+1,:) = Px(pidx)'; % --- How much longer? --- if (counter+0.01<= k/samples), counter = k/samples; waitbar(k/samples,waithandle); endendclose(waithandle);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -