⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ekfm.m

📁 是卡尔曼滤波算法的源代码
💻 M
字号:
function [xhat_data,Pmat]=ekfm(kalmfilex,kalmfiley,linfile,xbar,...                P0,q,r,u,y,timeidx,optpar)% EKFM%  This function is an implementation of the conventional%  extended Kalman filter (EKF).%  It is implemented to handle multiple observation streams.%  The filter estimates the states for nonlinear systems written in%  the general form:%               x(k+1) = f[x(k),u(k),v(k)]%               y1(k)  = g1[x(k),w1(k)]%                        :%               yn(k)  = gn[x(k),wn(k)]%   where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'%   are (white) noise sources.%% Call:%   [xhat,Pmat]=ekfm(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar) %% Input:%   xfunc   - Name of function containing the state equations.%   yfunc   - Cell array specifying the names of the functions %             containing the output equations.%   linfunc - Function containing linearization procedure.%   x0      - Initial state vector.%   P0      - Initial covariance matrix (symmetric, nonnegative definite).%   q       - Covariance matrices for process noise.%   r       - Cell array containing the measurement noise cov. matrices. %   u       - Input signal. Dimension is [samples x inputs].%             Use [] if there are no inputs.%   y       - Cell array containing the output signals. %             Dimension of each stream is [observations x outputs-in-stream].%   tidx    - Cell array containing vector with time stamps (in samples) %             for the observations in y.%   optpar  - Data structure containing optional parameters:%             .init : Initial parameters for 'xfile', 'yfile', and%                     'linfile' (use an arbitrary format).%% Output:%   xhat    - State estimates. Dimension is [samples+1 x states].%   Pmat    - Matrix where each row contains the upper triangular elements%             of the covariance matrix estimates. The dimension is %             [samples+1 x 0.5*states*(states+1)]. The individual covariance %             matrices can later be extracted with MAT2COV.%% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc' % containing state update, output equation, and linearization. The % function containing the state update should have the header % (the function name is arbitrary):%       function x=my_xfile(x,u,v)%% the functions containing output equations must have the header%       function y=my_yfile(x,w)%% while the function containing the linearization must have the header%      function [M,N]=my_linfile(x,u,vw,flag)% flag=0: Linearization of the state equation% flag=i: Linerization of the output equation no. i (i=1...n).%  % In all three cases, an initialization of constant parameters can be % made using the parameter 'optpar.init'. This parameter is passed through% x if the functions are called with only one parameter.% % Written by Magnus Norgaard% LastEditDate: Nov. 9, 2001% >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<nx           = size(P0,1); % # of statesnv           = size(q,1);  % # of process noise sourcesif isempty(xbar),          % Set to x0=0 if not specified   xbar = zeros(nx,1);elseif length(xbar)~=nx,  error('Dimension mismatch between x0 and P0');endstreams    = length(y);if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y))  error('"yfunc", "r", "tidx", and "y" must be cell array');elseif (streams~=length(r) | streams~=length(timeidx) | ...                                 streams~=length(kalmfiley))  error('"yfunc", "r", "tidx", and "y" must have same number of cells');endny         = 0;                % Total number of observationslastsample = 0;                % Number of sample containing last observationidx1 = zeros(streams,1);       % Index to start of each stream in ybaridx2 = zeros(streams,1);       % Index to end of each stream in ybarfor n=1:streams,               % Wrap information about observation stream   obs(n).yfunc = kalmfiley{n}; % into data structure  obs(n).y     = y{n};  obs(n).tidx  = timeidx{n};  obs(n).ny    = size(obs(n).y,2);  obs(n).nobs  = size(obs(n).y,1);  obs(n).r     = r{n};  obs(n).nw    = size(obs(n).r,1);  if (obs(n).nobs~=size(obs(n).tidx,1)),    error('Dimension mismatch between y and tidx');  end  ny = ny + obs(n).ny;  if obs(n).tidx(end)>lastsample,     lastsample=obs(n).tidx(end);  end  idx1(n) = ny - obs(n).ny + 1;  idx2(n) = ny;endif isempty(u),             % No inputs  nu = 0; samples = lastsample; uk1 = [];else  [samples,nu] = size(u);  % # of samples and inputsendPxbar = P0;                % A priori estimate = initial covariancexhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesPmat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matricespidx      = find(tril(reshape(1:nx*nx,nx,nx))); % Index in Pybar      = zeros(ny,1);yidx  = ones(streams,1);   % Index into y-vectors % ----- Initialize state+output equations and linearization -----if nargin<11,              % No optional parameters passed   optpar = [];endif isfield(optpar,'init')  % Parameters for m-functions   initpar = optpar.init;else   initpar = [];endvmean = zeros(nv,1);       % Mean of process noisefor n=1:streams,           % Mean of measurement noise   obs(n).wmean = zeros(obs(n).nw,1);endfeval(kalmfilex,initpar);      % Initialize state equationfor n=1:streams,   feval(obs(n).yfunc,initpar);% Initialize output equationsendfeval(linfile,initpar);        % Initialize linearizationcounter = 0;                   % Counts the progress of the filtering sessionwaithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples,  % --- Measurement update (a posteriori update) ---  for n=1:streams,    ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean);    if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k),          % Linearization      [C,G] = feval(linfile,xbar,[],obs(n).wmean,n);      % Kalman gain      if isempty(G),                               K = Pxbar*C'/(C*Pxbar*C'+obs(n).r); % Noise enters directly      else         K = Pxbar*C'/(C*Pxbar*C'+G*obs(n).r*G');% General update      end      % A posteriori covariance      Pxbar = Pxbar-K*C*Pxbar;            % State estimate      xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))];            yidx(n) = yidx(n) + 1;              % Update index in time vector    end  end  xhat = xbar;  Px   = Pxbar;    % --- Time update (a'priori update) of state and covariance ---  if k<samples,    if nu>0 uk1 = u(k+1,:)'; end    xbar=feval(kalmfilex,xhat,uk1,vmean);    % State update    [A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization    if isempty(F),                     % Covariance update       Pxbar = A*Px*A' + q;            % Noise enters directly    else       Pxbar = A*Px*A' + F*q*F';       % General update    end  end    % --- Store results ---  xhat_data(k+1,:) = xhat';  Pmat(k+1,:)      = Px(pidx)';     % --- How much longer? ---  if (counter+0.01<= k/samples),     counter = k/samples;     waitbar(k/samples,waithandle);  % Update waitbar  endendclose(waithandle);                   % Close waitbar window

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -