📄 ekfm.m
字号:
function [xhat_data,Pmat]=ekfm(kalmfilex,kalmfiley,linfile,xbar,... P0,q,r,u,y,timeidx,optpar)% EKFM% This function is an implementation of the conventional% extended Kalman filter (EKF).% It is implemented to handle multiple observation streams.% The filter estimates the states for nonlinear systems written in% the general form:% x(k+1) = f[x(k),u(k),v(k)]% y1(k) = g1[x(k),w1(k)]% :% yn(k) = gn[x(k),wn(k)]% where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'% are (white) noise sources.%% Call:% [xhat,Pmat]=ekfm(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar) %% Input:% xfunc - Name of function containing the state equations.% yfunc - Cell array specifying the names of the functions % containing the output equations.% linfunc - Function containing linearization procedure.% x0 - Initial state vector.% P0 - Initial covariance matrix (symmetric, nonnegative definite).% q - Covariance matrices for process noise.% r - Cell array containing the measurement noise cov. matrices. % u - Input signal. Dimension is [samples x inputs].% Use [] if there are no inputs.% y - Cell array containing the output signals. % Dimension of each stream is [observations x outputs-in-stream].% tidx - Cell array containing vector with time stamps (in samples) % for the observations in y.% optpar - Data structure containing optional parameters:% .init : Initial parameters for 'xfile', 'yfile', and% 'linfile' (use an arbitrary format).%% Output:% xhat - State estimates. Dimension is [samples+1 x states].% Pmat - Matrix where each row contains the upper triangular elements% of the covariance matrix estimates. The dimension is % [samples+1 x 0.5*states*(states+1)]. The individual covariance % matrices can later be extracted with MAT2COV.%% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc' % containing state update, output equation, and linearization. The % function containing the state update should have the header % (the function name is arbitrary):% function x=my_xfile(x,u,v)%% the functions containing output equations must have the header% function y=my_yfile(x,w)%% while the function containing the linearization must have the header% function [M,N]=my_linfile(x,u,vw,flag)% flag=0: Linearization of the state equation% flag=i: Linerization of the output equation no. i (i=1...n).% % In all three cases, an initialization of constant parameters can be % made using the parameter 'optpar.init'. This parameter is passed through% x if the functions are called with only one parameter.% % Written by Magnus Norgaard% LastEditDate: Nov. 9, 2001% >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<nx = size(P0,1); % # of statesnv = size(q,1); % # of process noise sourcesif isempty(xbar), % Set to x0=0 if not specified xbar = zeros(nx,1);elseif length(xbar)~=nx, error('Dimension mismatch between x0 and P0');endstreams = length(y);if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y)) error('"yfunc", "r", "tidx", and "y" must be cell array');elseif (streams~=length(r) | streams~=length(timeidx) | ... streams~=length(kalmfiley)) error('"yfunc", "r", "tidx", and "y" must have same number of cells');endny = 0; % Total number of observationslastsample = 0; % Number of sample containing last observationidx1 = zeros(streams,1); % Index to start of each stream in ybaridx2 = zeros(streams,1); % Index to end of each stream in ybarfor n=1:streams, % Wrap information about observation stream obs(n).yfunc = kalmfiley{n}; % into data structure obs(n).y = y{n}; obs(n).tidx = timeidx{n}; obs(n).ny = size(obs(n).y,2); obs(n).nobs = size(obs(n).y,1); obs(n).r = r{n}; obs(n).nw = size(obs(n).r,1); if (obs(n).nobs~=size(obs(n).tidx,1)), error('Dimension mismatch between y and tidx'); end ny = ny + obs(n).ny; if obs(n).tidx(end)>lastsample, lastsample=obs(n).tidx(end); end idx1(n) = ny - obs(n).ny + 1; idx2(n) = ny;endif isempty(u), % No inputs nu = 0; samples = lastsample; uk1 = [];else [samples,nu] = size(u); % # of samples and inputsendPxbar = P0; % A priori estimate = initial covariancexhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesPmat = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matricespidx = find(tril(reshape(1:nx*nx,nx,nx))); % Index in Pybar = zeros(ny,1);yidx = ones(streams,1); % Index into y-vectors % ----- Initialize state+output equations and linearization -----if nargin<11, % No optional parameters passed optpar = [];endif isfield(optpar,'init') % Parameters for m-functions initpar = optpar.init;else initpar = [];endvmean = zeros(nv,1); % Mean of process noisefor n=1:streams, % Mean of measurement noise obs(n).wmean = zeros(obs(n).nw,1);endfeval(kalmfilex,initpar); % Initialize state equationfor n=1:streams, feval(obs(n).yfunc,initpar);% Initialize output equationsendfeval(linfile,initpar); % Initialize linearizationcounter = 0; % Counts the progress of the filtering sessionwaithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples, % --- Measurement update (a posteriori update) --- for n=1:streams, ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean); if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k), % Linearization [C,G] = feval(linfile,xbar,[],obs(n).wmean,n); % Kalman gain if isempty(G), K = Pxbar*C'/(C*Pxbar*C'+obs(n).r); % Noise enters directly else K = Pxbar*C'/(C*Pxbar*C'+G*obs(n).r*G');% General update end % A posteriori covariance Pxbar = Pxbar-K*C*Pxbar; % State estimate xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))]; yidx(n) = yidx(n) + 1; % Update index in time vector end end xhat = xbar; Px = Pxbar; % --- Time update (a'priori update) of state and covariance --- if k<samples, if nu>0 uk1 = u(k+1,:)'; end xbar=feval(kalmfilex,xhat,uk1,vmean); % State update [A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization if isempty(F), % Covariance update Pxbar = A*Px*A' + q; % Noise enters directly else Pxbar = A*Px*A' + F*q*F'; % General update end end % --- Store results --- xhat_data(k+1,:) = xhat'; Pmat(k+1,:) = Px(pidx)'; % --- How much longer? --- if (counter+0.01<= k/samples), counter = k/samples; waitbar(k/samples,waithandle); % Update waitbar endendclose(waithandle); % Close waitbar window
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -