⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd2.m

📁 是卡尔曼滤波算法的源代码
💻 M
字号:
function [xhat_data,Smat]=dd2(kalmfilex,kalmfiley,xbar,P0,q,r,u,y,timeidx,optpar)% DD2%   This function performs a DD2-filtering; a state estimation for nonlinear %   systems that is based on second-order polynomial approximations of the %   nonlinear mappings. The approximations are derived by using a %   multidimensional extension of Stirling's interpolation formula. %   The model of the nonlinear system must be specified in the form:%               x(k+1) = f[x(k),u(k),v(k)]%               y(k)   = g[x(k),w(k)]%   where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'%   are (white) noise sources.%% Call%   [xhat,Smat]=dd2(xfile,yfile,x0,P0,q,r,u,y,timeidx,optpar) %% Input%   xfile   - File containing the state equations.%   yfile   - File containing the output equations.%   x0      - Initial state vector.%   P0      - Initial covariance matrix (symmetric, nonnegative definite).%   q,r     - Covariance matrices for v and w, respectively.%   u       - Input signal. Dimension is [samples x inputs].%             Use [] if there are no inputs.%   y       - Output signal. Dimension is [observations x outputs].%   timeidx - Vector containing sample numbers for the availability of%             the observations in 'y'. The vector has same length as 'y'.%   optpar  - Data structure containing optional parameters:%             .A:     State transition matrix.%             .C:     Output sensitivity matrix.%             .F:     Process noise coupling matrix.%             .G:     Measurement noise coupling matrix.%             .init : Initial parameters for 'xfile' and 'yfile'%                     (use an arbitrary format).%% Output%   xhat    - State estimates. Dimension is [samples+1 x states].%   Smat    - Matrix where each row contains elements of (the upper triangular%             part of) the Cholesky factor of the covariance matrix. The %             dimension is [samples+1 x 0.5*states*(states+1)]. The individual%             covariance matrices can later be extracted with SMAT2COV.%%  The user must write the two m-functions 'xfile' and 'yfile' containing the%  state update and the output equation. The function containing the state%  update should take three arguments:%       function x=my_xfile(x,u,v)%%  while the function containing the output equation should take two%  arguments:%       function y=my_yfile(x,w)%%  In both cases, an initialization of constant parameters can be %  made using the parameter 'optpar.init'. This parameter is passed through%  x if the functions are called with only one parameter.%%  Literature:%     M. Norgaard, N.K. Poulsen, O. Ravn: "New Developments in State%     Estimation for Nonlinear Systems", Automatica, (36:11), Nov. 2000,%     pp. 1627-1638.%% Written by: Magnus Norgaard% LastEditDate: Nov. 9, 2001 % >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<h2    = 3;                 % Squared divided-difference step sizeh     = sqrt(h2);          % Divided difference step-sizescal1 = 0.5/h;             % A convenient scaling factorscal2 = sqrt((h2-1)/(4*h2*h2)); % Another scaling factorif isempty(u),             % No inputs  nu = 0; samples = timeidx(end); uk1 = [];else  [samples,nu] = size(u);  % # of samples and inputsendnx           = size(P0,1); % # of statesif isempty(xbar),          % Set to x0=0 if not specified   xbar = zeros(nx,1);elseif length(xbar)~=nx,  error('Dimension mismatch between x0 and P0');endny    = size(y,2);         % # of outputsnv    = size(q,1);         % # of process noise sourcesnw    = size(r,1);         % # of measurement noise sources[v,d] = eig(P0);           % Square root of initial state covarianceSxbar = triag(real(v*sqrt(d)));[v,d] = eig(q);            % Square root of process noise covarianceSv    = real(v*sqrt(d));hSv   = h*Sv;[v,d] = eig(r);Sw    = real(v*sqrt(d));   % Square root of measurement noise cov.hSw   = h*Sw;SxxSxv = zeros(nx,2*(nx+nv));  % Allocate compund matrix consisting of Sxx and Syv SyxSyw = zeros(ny,2*(nx+nw));  % Allocate compund matrix consisting of Syx and Sywxhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesSmat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices[I,J]     = find(triu(reshape(1:nx*nx,nx,nx))'); % Index to elem. in Sxsidx      = sub2ind([nx nx],J,I); yidx  = 1;                 % Index into y-vector vmean = zeros(nv,1);       % Mean of process noisewmean = zeros(nw,1);       % Mean of measurement noise% ----- Initialize state+output equations and linearization -----if nargin<10,              % No optional parameters passed   optpar = [];endif isfield(optpar,'init')  % Parameters for m-functions   initpar = optpar.init;else   initpar = [];endAflag = 0; Cflag = 0; Fflag = 0; Gflag = 0;nxnv2 = nx+nv;nxnw2 = nx+nw;if isfield(optpar,'A'),    % Deterministic dynamic model is linear   A = optpar.A;   if(size(A,1)~=nx | size(A,2)~=nx)      error('"optpar.A" has the wrong dimension');   end   nxnv2 = nxnv2-nx;   Aflag = 1;endif isfield(optpar,'F'),    % Linear process noise model in state equation   F = optpar.F;   if(size(F,1)~=nx | size(F,2)~=nv)      error('"optpar.F" has the wrong dimension');   end   SxxSxv(:,nx+1:nx+nv) = F*Sv;   nxnv2 = nxnv2-nv;   Fflag = 1;endif isfield(optpar,'C'),    % Deterministic observation model linear   C = optpar.C;   if(size(C,1)~=ny | size(C,2)~=nx)      error('"optpar.C" has the wrong dimension');   end   nxnw2 = nxnw2-nx;   Cflag = 1;endif isfield(optpar,'G'),    % Linear observation noise model   G = optpar.G;   if(size(G,1)~=ny | size(G,2)~=nw)      error('"optpar.G" has the wrong dimension');   end   SyxSyw(:,nx+1:nx+nw) = G*Sw;   nxnw2 = nxnw2-nw;   Gflag = 1;end% Index to location of Sxv2 and Syw2 in SxxSxv and SyxSyw matricesif Cflag,	idx_syw2 = nx+nw;else	idx_syw2 = 2*nx+nw;endif Aflag,	idx_sxv2 = nx+nv;else	idx_sxv2 = 2*nx+nv;endSxxSxv = [SxxSxv zeros(nx,nxnv2)];SyxSyw = [SyxSyw zeros(ny,nxnw2)];feval(kalmfilex,initpar);  % State equationfeval(kalmfiley,initpar);  % Output equationcounter = 0;               % Counts the progress of the filteringwaithandle=waitbar(0,'Filtering in progress');  % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples,  % --- Measurement update (a posteriori update) ---  y0 = feval(kalmfiley,xbar,wmean);  if (k<=timeidx(end) & timeidx(yidx)==k),    ybar = ((h2-nxnw2)/h2)*y0;    if Cflag,       SyxSyw(:,1:nx) = C*Sxbar;    else       kx2 = nx+nw;       for kx=1:nx,          syp = feval(kalmfiley,xbar+h*Sxbar(:,kx),wmean);          sym = feval(kalmfiley,xbar-h*Sxbar(:,kx),wmean);          SyxSyw(:,kx)  = scal1*(syp-sym);          SyxSyw(:,kx2+kx) = scal2*(syp+sym-2*y0);          ybar = ybar + (syp+sym)/(2*h2);           end    end    if ~Gflag,       for kw=1:nw,          swp = feval(kalmfiley,xbar,hSw(:,kw));          swm = feval(kalmfiley,xbar,-hSw(:,kw));          SyxSyw(:,nx+kw)       = scal1*(swp-swm);          SyxSyw(:,idx_syw2+kw) = scal2*(swp+swm-2*y0);          ybar = ybar + (swp+swm)/(2*h2);                 end    end        % Cholesky factor of a'posteriori output estimation error covariance    Sy   = triag(SyxSyw);    K    = (Sxbar*SyxSyw(:,1:nx)')/(Sy*Sy');    xhat = xbar + K*(y(yidx,:)'-ybar);  % State estimate    % Cholesky factor of a'posteriori estimation error covariance    Sx   = triag([Sxbar-K*SyxSyw(:,1:nx) K*SyxSyw(:,nx+1:end)]);    yidx = yidx + 1;   % No observations available at this sampling instant  else    xhat = xbar;                       % Copy a priori state estimate    Sx   = Sxbar;                      % Copy a priori covariance factor  end  % --- Time update (a'priori update) of state and covariance ---  if k<samples,     if nu>0 uk1 = u(k+1,:)'; end    fxbar = feval(kalmfilex,xhat,uk1,vmean);    xbar = ((h2-nxnv2)/h2)*fxbar;    if Aflag,        SxxSxv(:,1:nx) = A*Sx;    else       kx2 = nx+nv;       for kx=1:nx,          sxp = feval(kalmfilex,xhat+h*Sx(:,kx),uk1,vmean);          sxm = feval(kalmfilex,xhat-h*Sx(:,kx),uk1,vmean);          SxxSxv(:,kx) = scal1*(sxp-sxm);          SxxSxv(:,kx2+kx) = scal2*(sxp+sxm-2*fxbar);          xbar            =  xbar + (sxp+sxm)/(2*h2);       end    end    if ~Fflag,       for kv=1:nv,          svp = feval(kalmfilex,xhat,uk1,hSv(:,kv));          svm = feval(kalmfilex,xhat,uk1,-hSv(:,kv));          SxxSxv(:,nx+kv)       = scal1*(svp-svm);          SxxSxv(:,idx_sxv2+kv) = scal2*(svp+svm-2*fxbar);          xbar                  = xbar + (svp+svm)/(2*h2);       end    end        % Cholesky factor of a'priori estimation error covariance    Sxbar = triag(SxxSxv);  end    % --- Store results ---  xhat_data(k+1,:) = xhat';  Smat(k+1,:)      = Sx(sidx)';  % --- How much longer? ---  if (counter+0.01<= k/samples),     counter = k/samples;     waitbar(k/samples,waithandle);  endendclose(waithandle);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -