⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd1m.m

📁 是卡尔曼滤波算法的源代码
💻 M
字号:
function [xhat_data,Smat]=dd1m(kalmfilex,kalmfiley,xbar,P0,q,r,...                 u,y,timeidx,optpar)% DD1M%   This function performs a DD1-filtering; a state estimation for nonlinear %   systems that is based on first-order polynomial approximations of the %   nonlinear mappings. The approximations are derived by using a %   multidimensional extension of Stirling's interpolation formula.%   The function is implemented to handle multiple observation streams.%   The model of the nonlinear system must be specified in the form:%               x(k+1) = f[x(k),u(k),v(k)]%               y1(k)  = g1[x(k),w1(k)]%                        :%               yn(k)  = gn[x(k),wn(k)]%   where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'%   are (white) noise sources.%% Call%   [xhat,Smat]=dd1m(xfile,yfile,x0,P0,q,r,u,y,tidx,optpar) %% Input%   xfile   - File containing the state equations.%   yfunc   - Cell array specifying the names of the functions %             containing the output equations.%   x0      - Initial state vector.%   P0      - Initial covariance matrix (symmetric, nonnegative definite).%   q       - Covariance matrices for process noise.%   r       - Cell array containing the measurement noise cov. matrices. %   u       - Input signal. Dimension is [samples x inputs].%             Use [] if there are no inputs.%   y       - Cell array containing the output signals. %             Dimension of each stream is [observations x outputs-in-stream].%   tidx    - Cell array containing vector with time stamps (in samples) %             for the observations in y.%   optpar  - Data structure containing optional parameters:%             .A:     State transition matrix.%             .C:     Output sensitivity matrix (cell array).%             .F:     Process noise coupling matrix.%             .G:     Measurement noise coupling matrix (cell array).%             .init : Initial parameters for 'xfile', 'yfile'%                     (use an arbitrary format).%% Output%   xhat    - State estimates. Dimension is [samples+1 x states].%   Smat    - Matrix where each row contains elements of (the upper triangular%             part of) the Cholesky factor of a covariance matrix. The %             dimension is [samples+1 x 0.5*states*(states+1)]. The individual%             covariance matrices can later be extracted with SMAT2COV.%%  The user must write the two m-functions 'xfile' and 'yfile' containing the%  state update and the output equation. The function containing the state%  update should take three arguments:%       function x=my_xfile(x,u,v)%%  while the function containing the output equation should take two%  arguments:%       function y=my_yfile(x,w)%%  In both cases, an initialization of constant parameters can be %  made using the parameter 'optpar.init'. This parameter is passed through%  x if the functions are called with only one parameter.%%  Literature:%     M. Norgaard, N.K. Poulsen, O. Ravn: "New Developments in State%     Estimation for Nonlinear Systems", Automatica, (36:11), Nov. 2000,%     pp. 1627-1638.%% Written by Magnus Norgaard% LastEditDate: Nov. 9, 2001 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<h2    = 3;                 % Squared divided difference steph     = sqrt(h2);          % Divided difference stepscal1 = 0.5/h;             % Scaling factornx    = size(P0,1); % # of statesnv    = size(q,1);  % # of process noise sourcesif isempty(xbar),          % Set to x0=0 if not specified   xbar = zeros(nx,1);elseif length(xbar)~=nx,  error('Dimension mismatch between x0 and P0');endstreams    = length(y);if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y))  error('"yfunc", "r", "tidx", and "y" must be cell array');elseif (streams~=length(r) | streams~=length(timeidx) | ...                                 streams~=length(kalmfiley))  error('"yfunc", "r", "tidx", and "y" must have same number of cells');endny         = 0;                % Total number of observationslastsample = 0;                % Number of sample containing last observationidx1 = zeros(streams,1);       % Index to start of each stream in ybaridx2 = zeros(streams,1);       % Index to end of each stream in ybarfor n=1:streams,               % Wrap information about observation stream   obs(n).yfunc = kalmfiley{n}; % into data structure  obs(n).y     = y{n};  obs(n).tidx  = timeidx{n};  obs(n).ny    = size(obs(n).y,2);  obs(n).nobs  = size(obs(n).y,1);  [v,d]        = eig(r{n});  obs(n).nw    = size(r{n},1);    obs(n).Sw    = real(v*sqrt(d)); % Square root of measurement noise cov.  obs(n).hSw   = h*obs(n).Sw;  obs(n).SyxSyw= zeros(obs(n).ny,nx+obs(n).nw);  if (obs(n).nobs~=length(obs(n).tidx)),    error('Dimension mismatch between y and tidx');  end  ny = ny + obs(n).ny;  if obs(n).tidx(end)>lastsample,     lastsample=obs(n).tidx(end);  end  idx1(n) = ny - obs(n).ny + 1;  idx2(n) = ny;  obs(n).Cflag=0;  obs(n).Gflag=0;endif isempty(u),             % No inputs  nu = 0; samples = lastsample; uk1 = [];else  [samples,nu] = size(u);  % # of samples and inputsendxhat_data = zeros(samples+1,nx); % Matrix for storing state estimatesSmat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices[I,J]     = find(triu(reshape(1:nx*nx,nx,nx))'); % Index to elem. in Sxsidx      = sub2ind([nx nx],J,I); ybar      = zeros(ny,1);yidx      = ones(streams,1);% Index into y-vectors % ----- Initialize state+output equations and linearization -----if nargin<10,              % No optional parameters passed   optpar = [];endif isfield(optpar,'init')  % Parameters for m-functions   initpar = optpar.init;else   initpar = [];endvmean = zeros(nv,1);       % Mean of process noisefor n=1:streams,           % Mean of measurement noise   obs(n).wmean = zeros(obs(n).nw,1);end[v,d] = eig(P0);           % Cholesky factor of initial state covarianceSxbar = triag(real(v*sqrt(d)));[v,d] = eig(q);            % Cholesky factor of process noise covarianceSv    = real(v*sqrt(d));hSv   = h*Sv;SxxSxv = zeros(nx,nx+nv);  % Allocate compund matrix consisting of Sxx and Syv Aflag = 0; Fflag = 0;if isfield(optpar,'A'),    % Deterministic dynamic model is linear   A = optpar.A;   if(size(A,1)~=nx | size(A,2)~=nx)      error('"optpar.A" has the wrong dimension');   end   Aflag = 1;endif isfield(optpar,'F'),    % Linear process noise model in state equation   F = optpar.F;   if(size(F,1)~=nx | size(F,2)~=nv)      error('"optpar.F" has the wrong dimension');   end   SxxSxv(:,nx+1:nx+nv) = F*Sv;   Fflag = 1;endif isfield(optpar,'C'),    % Deterministic observation model is linear   if ~iscell(optpar.C),      error('"optpar.C" must be a cell array');   elseif streams~=length(optpar.C),      error('Number of cells in "optpar.C" is wrong');   end   for n=1:streams,		if ~isempty(optpar.C{n})  % Observation model "n" is linear         obs(n).Cflag = 1;			obs(n).C = optpar.C{n};		   if(size(obs(n).C,1)~=obs(n).ny | size(obs(n).C,2)~=nx)				errstr=sprintf('optpar.C{%d} has the wrong dimension',n);            error(errstr);			end      end   endendif isfield(optpar,'G'),    % Linear observation noise model   if ~iscell(optpar.G),      error('"optpar.G" must be a cell array');   elseif streams~=length(optpar.G),      error('Number of cells in "optpar.G" is wrong');   end   for n=1:streams,		if ~isempty(optpar.G{n})  % Observation model "n" is linear         obs(n).Gflag = 1;			obs(n).G = optpar.G{n};		   if(size(obs(n).G,1)~=obs(n).ny | size(obs(n).G,2)~=obs(n).nw)				errstr=sprintf('optpar.G{%d} has the wrong dimension',n);            error(errstr);			end         obs(n).SyxSyw(:,nx+1:nx+obs(n).nw) = obs(n).G*obs(n).Sw;		end	endendfeval(kalmfilex,initpar);       % Initialize state equationfor n=1:streams,   feval(obs(n).yfunc,initpar); % Initialize output equationsendcounter = 0;               % Counts the progress of the filteringwaithandle=waitbar(0,'Filtering in progress');  % Initialize waitbar% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<for k=0:samples,  % --- Measurement update (a posteriori update) ---  for n=1:streams,    ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean);    if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k),		 if obs(n).Cflag,          obs(n).SyxSyw(:,1:nx) = obs(n).C*Sxbar;       else           for kx=1:nx,             syp = feval(obs(n).yfunc,xbar+h*Sxbar(:,kx),obs(n).wmean);             sym = feval(obs(n).yfunc,xbar-h*Sxbar(:,kx),obs(n).wmean);             obs(n).SyxSyw(:,kx) = scal1*(syp-sym);          end		 end		 if ~obs(n).Gflag          kw2=nx;          for kw=1:obs(n).nw,             swp = feval(obs(n).yfunc,xbar,obs(n).hSw(:,kw));             swm = feval(obs(n).yfunc,xbar,-obs(n).hSw(:,kw));             obs(n).SyxSyw(:,kw2+kw) = scal1*(swp-swm);          end		 end            % Cholesky factor of a'posteriori output estimation error covariance      Sy   = triag([obs(n).SyxSyw]);            % Kalman gain      K    = (Sxbar*obs(n).SyxSyw(:,1:nx)')/(Sy*Sy');            % State estimate      xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))];                  % Cholesky factor of a'posteriori estimation error covariance      Sxbar = triag([Sxbar-K*obs(n).SyxSyw(:,1:nx) K*obs(n).SyxSyw(:,nx+1:end)]);      yidx(n) = yidx(n) + 1;              % Update index in time vector    end  end  xhat = xbar;  Sx   = Sxbar;  % --- Time update (a'priori update) of state and covariance ---  if k<samples,    if nu>0 uk1 = u(k+1,:)'; end    xbar=feval(kalmfilex,xhat,uk1,vmean);    if Aflag,        SxxSxv(:,1:nx) = A*Sx;    else       for kx=1:nx,          sxp = feval(kalmfilex,xhat+h*Sx(:,kx),uk1,vmean);          sxm = feval(kalmfilex,xhat-h*Sx(:,kx),uk1,vmean);          SxxSxv(:,kx) = scal1*(sxp-sxm);       end    end    if ~Fflag,        kv2=nx;       for kv=1:nv,          svp = feval(kalmfilex,xhat,uk1,hSv(:,kv));          svm = feval(kalmfilex,xhat,uk1,-hSv(:,kv));          SxxSxv(:,kv+kv2) = scal1*(svp-svm);       end    end    % Cholesky factor of a'priori estimation error covariance    Sxbar = triag(SxxSxv);  end      % --- Store results ---  xhat_data(k+1,:) = xhat';  Smat(k+1,:)      = Sx(sidx)';      % --- How much longer? ---  if (counter+0.01<= k/samples),     counter = k/samples;     waitbar(k/samples,waithandle);  endendclose(waithandle);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -