⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 singularvaluedecomposition.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* * This software is a cooperative product of The MathWorks and the National * Institute of Standards and Technology (NIST) which has been released to the * public domain. Neither The MathWorks nor NIST assumes any responsibility * whatsoever for its use by other parties, and makes no guarantees, expressed * or implied, about its quality, reliability, or any other characteristic. *//* * SingularValueDecomposition.java * Copyright (C) 1999 The Mathworks and NIST * */package weka.core.matrix;import java.io.Serializable;/**  * Singular Value Decomposition. * <P> * For an m-by-n matrix A with m &gt;= n, the singular value decomposition is an * m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n * orthogonal matrix V so that A = U*S*V'. * <P> * The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] &gt;= * sigma[1] &gt;= ... &gt;= sigma[n-1]. * <P> * The singular value decompostion always exists, so the constructor will never * fail.  The matrix condition number and the effective numerical rank can be * computed from this decomposition. * <p/> * Adapted from the <a href="http://math.nist.gov/javanumerics/jama/" target="_blank">JAMA</a> package. * * @author The Mathworks and NIST  * @author Fracpete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.2 $ */public class SingularValueDecomposition   implements Serializable {  /**    * Arrays for internal storage of U and V.   * @serial internal storage of U.   * @serial internal storage of V.   */  private double[][] U, V;  /**    * Array for internal storage of singular values.   * @serial internal storage of singular values.   */  private double[] s;  /**    * Row and column dimensions.   * @serial row dimension.   * @serial column dimension.   */  private int m, n;  /**    * Construct the singular value decomposition   * @param Arg    Rectangular matrix   */  public SingularValueDecomposition(Matrix Arg) {    // Derived from LINPACK code.    // Initialize.    double[][] A = Arg.getArrayCopy();    m = Arg.getRowDimension();    n = Arg.getColumnDimension();    int nu = Math.min(m,n);    s = new double [Math.min(m+1,n)];    U = new double [m][nu];    V = new double [n][n];    double[] e = new double [n];    double[] work = new double [m];    boolean wantu = true;    boolean wantv = true;    // Reduce A to bidiagonal form, storing the diagonal elements    // in s and the super-diagonal elements in e.    int nct = Math.min(m-1,n);    int nrt = Math.max(0,Math.min(n-2,m));    for (int k = 0; k < Math.max(nct,nrt); k++) {      if (k < nct) {        // Compute the transformation for the k-th column and        // place the k-th diagonal in s[k].        // Compute 2-norm of k-th column without under/overflow.        s[k] = 0;        for (int i = k; i < m; i++) {          s[k] = Maths.hypot(s[k],A[i][k]);        }        if (s[k] != 0.0) {          if (A[k][k] < 0.0) {            s[k] = -s[k];          }          for (int i = k; i < m; i++) {            A[i][k] /= s[k];          }          A[k][k] += 1.0;        }        s[k] = -s[k];      }      for (int j = k+1; j < n; j++) {        if ((k < nct) & (s[k] != 0.0))  {          // Apply the transformation.          double t = 0;          for (int i = k; i < m; i++) {            t += A[i][k]*A[i][j];          }          t = -t/A[k][k];          for (int i = k; i < m; i++) {            A[i][j] += t*A[i][k];          }        }        // Place the k-th row of A into e for the        // subsequent calculation of the row transformation.        e[j] = A[k][j];      }      if (wantu & (k < nct)) {        // Place the transformation in U for subsequent back        // multiplication.        for (int i = k; i < m; i++) {          U[i][k] = A[i][k];        }      }      if (k < nrt) {        // Compute the k-th row transformation and place the        // k-th super-diagonal in e[k].        // Compute 2-norm without under/overflow.        e[k] = 0;        for (int i = k+1; i < n; i++) {          e[k] = Maths.hypot(e[k],e[i]);        }        if (e[k] != 0.0) {          if (e[k+1] < 0.0) {            e[k] = -e[k];          }          for (int i = k+1; i < n; i++) {            e[i] /= e[k];          }          e[k+1] += 1.0;        }        e[k] = -e[k];        if ((k+1 < m) & (e[k] != 0.0)) {          // Apply the transformation.          for (int i = k+1; i < m; i++) {            work[i] = 0.0;          }          for (int j = k+1; j < n; j++) {            for (int i = k+1; i < m; i++) {              work[i] += e[j]*A[i][j];            }          }          for (int j = k+1; j < n; j++) {            double t = -e[j]/e[k+1];            for (int i = k+1; i < m; i++) {              A[i][j] += t*work[i];            }          }        }        if (wantv) {          // Place the transformation in V for subsequent          // back multiplication.          for (int i = k+1; i < n; i++) {            V[i][k] = e[i];          }        }      }    }    // Set up the final bidiagonal matrix or order p.    int p = Math.min(n,m+1);    if (nct < n) {      s[nct] = A[nct][nct];    }    if (m < p) {      s[p-1] = 0.0;    }    if (nrt+1 < p) {      e[nrt] = A[nrt][p-1];    }    e[p-1] = 0.0;    // If required, generate U.    if (wantu) {      for (int j = nct; j < nu; j++) {        for (int i = 0; i < m; i++) {          U[i][j] = 0.0;        }        U[j][j] = 1.0;      }      for (int k = nct-1; k >= 0; k--) {        if (s[k] != 0.0) {          for (int j = k+1; j < nu; j++) {            double t = 0;            for (int i = k; i < m; i++) {              t += U[i][k]*U[i][j];            }            t = -t/U[k][k];            for (int i = k; i < m; i++) {              U[i][j] += t*U[i][k];            }          }          for (int i = k; i < m; i++ ) {            U[i][k] = -U[i][k];          }          U[k][k] = 1.0 + U[k][k];          for (int i = 0; i < k-1; i++) {            U[i][k] = 0.0;          }        } else {          for (int i = 0; i < m; i++) {            U[i][k] = 0.0;          }          U[k][k] = 1.0;        }      }    }    // If required, generate V.    if (wantv) {      for (int k = n-1; k >= 0; k--) {        if ((k < nrt) & (e[k] != 0.0)) {          for (int j = k+1; j < nu; j++) {            double t = 0;            for (int i = k+1; i < n; i++) {              t += V[i][k]*V[i][j];            }            t = -t/V[k+1][k];            for (int i = k+1; i < n; i++) {              V[i][j] += t*V[i][k];            }          }        }        for (int i = 0; i < n; i++) {          V[i][k] = 0.0;        }        V[k][k] = 1.0;      }    }    // Main iteration loop for the singular values.    int pp = p-1;    int iter = 0;    double eps = Math.pow(2.0,-52.0);    while (p > 0) {      int k,kase;      // Here is where a test for too many iterations would go.      // This section of the program inspects for      // negligible elements in the s and e arrays.  On      // completion the variables kase and k are set as follows.      // kase = 1     if s(p) and e[k-1] are negligible and k<p      // kase = 2     if s(k) is negligible and k<p      // kase = 3     if e[k-1] is negligible, k<p, and      //              s(k), ..., s(p) are not negligible (qr step).      // kase = 4     if e(p-1) is negligible (convergence).      for (k = p-2; k >= -1; k--) {        if (k == -1) {          break;        }        if (Math.abs(e[k]) <= eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {          e[k] = 0.0;          break;        }      }      if (k == p-2) {        kase = 4;      } else {        int ks;        for (ks = p-1; ks >= k; ks--) {          if (ks == k) {            break;          }          double t = (ks != p ? Math.abs(e[ks]) : 0.) +                                                   (ks != k+1 ? Math.abs(e[ks-1]) : 0.);          if (Math.abs(s[ks]) <= eps*t)  {            s[ks] = 0.0;            break;          }        }        if (ks == k) {          kase = 3;        } else if (ks == p-1) {          kase = 1;        } else {          kase = 2;          k = ks;        }      }      k++;      // Perform the task indicated by kase.      switch (kase) {        // Deflate negligible s(p).        case 1: {                  double f = e[p-2];                  e[p-2] = 0.0;                  for (int j = p-2; j >= k; j--) {                    double t = Maths.hypot(s[j],f);                    double cs = s[j]/t;                    double sn = f/t;                    s[j] = t;                    if (j != k) {                      f = -sn*e[j-1];                      e[j-1] = cs*e[j-1];                    }                    if (wantv) {                      for (int i = 0; i < n; i++) {                        t = cs*V[i][j] + sn*V[i][p-1];                        V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];                        V[i][j] = t;                      }                    }                  }        }        break;        // Split at negligible s(k).        case 2: {                  double f = e[k-1];                  e[k-1] = 0.0;                  for (int j = k; j < p; j++) {                    double t = Maths.hypot(s[j],f);                    double cs = s[j]/t;                    double sn = f/t;                    s[j] = t;                    f = -sn*e[j];                    e[j] = cs*e[j];                    if (wantu) {                      for (int i = 0; i < m; i++) {                        t = cs*U[i][j] + sn*U[i][k-1];                        U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];                        U[i][j] = t;                      }                    }                  }        }        break;        // Perform one qr step.        case 3: {                  // Calculate the shift.                  double scale = Math.max(Math.max(Math.max(Math.max(                            Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),                         Math.abs(s[k])),Math.abs(e[k]));                  double sp = s[p-1]/scale;                  double spm1 = s[p-2]/scale;                  double epm1 = e[p-2]/scale;                  double sk = s[k]/scale;                  double ek = e[k]/scale;                  double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;                  double c = (sp*epm1)*(sp*epm1);                  double shift = 0.0;                  if ((b != 0.0) | (c != 0.0)) {                    shift = Math.sqrt(b*b + c);                    if (b < 0.0) {                      shift = -shift;                    }                    shift = c/(b + shift);                  }                  double f = (sk + sp)*(sk - sp) + shift;                  double g = sk*ek;                  // Chase zeros.                  for (int j = k; j < p-1; j++) {                    double t = Maths.hypot(f,g);                    double cs = f/t;                    double sn = g/t;                    if (j != k) {                      e[j-1] = t;                    }                    f = cs*s[j] + sn*e[j];                    e[j] = cs*e[j] - sn*s[j];                    g = sn*s[j+1];                    s[j+1] = cs*s[j+1];                    if (wantv) {                      for (int i = 0; i < n; i++) {                        t = cs*V[i][j] + sn*V[i][j+1];                        V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];                        V[i][j] = t;                      }                    }                    t = Maths.hypot(f,g);                    cs = f/t;                    sn = g/t;                    s[j] = t;                    f = cs*e[j] + sn*s[j+1];                    s[j+1] = -sn*e[j] + cs*s[j+1];                    g = sn*e[j+1];                    e[j+1] = cs*e[j+1];                    if (wantu && (j < m-1)) {                      for (int i = 0; i < m; i++) {                        t = cs*U[i][j] + sn*U[i][j+1];                        U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];                        U[i][j] = t;                      }                    }                  }                  e[p-2] = f;                  iter = iter + 1;        }        break;        // Convergence.        case 4: {                  // Make the singular values positive.                  if (s[k] <= 0.0) {                    s[k] = (s[k] < 0.0 ? -s[k] : 0.0);                    if (wantv) {                      for (int i = 0; i <= pp; i++) {                        V[i][k] = -V[i][k];                      }                    }                  }                  // Order the singular values.                  while (k < pp) {                    if (s[k] >= s[k+1]) {                      break;                    }                    double t = s[k];                    s[k] = s[k+1];                    s[k+1] = t;                    if (wantv && (k < n-1)) {                      for (int i = 0; i < n; i++) {                        t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;                      }                    }                    if (wantu && (k < m-1)) {                      for (int i = 0; i < m; i++) {                        t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;                      }                    }                    k++;                  }                  iter = 0;                  p--;        }        break;      }    }  }  /**    * Return the left singular vectors   * @return     U   */  public Matrix getU() {    return new Matrix(U,m,Math.min(m+1,n));  }  /**    * Return the right singular vectors   * @return     V   */  public Matrix getV() {    return new Matrix(V,n,n);  }  /**    * Return the one-dimensional array of singular values   * @return     diagonal of S.   */  public double[] getSingularValues() {    return s;  }  /**    * Return the diagonal matrix of singular values   * @return     S   */  public Matrix getS() {    Matrix X = new Matrix(n,n);    double[][] S = X.getArray();    for (int i = 0; i < n; i++) {      for (int j = 0; j < n; j++) {        S[i][j] = 0.0;      }      S[i][i] = this.s[i];    }    return X;  }  /**    * Two norm   * @return     max(S)   */  public double norm2() {    return s[0];  }  /**    * Two norm condition number   * @return     max(S)/min(S)   */  public double cond() {    return s[0]/s[Math.min(m,n)-1];  }  /**    * Effective numerical matrix rank   * @return     Number of nonnegligible singular values.   */  public int rank() {    double eps = Math.pow(2.0,-52.0);    double tol = Math.max(m,n)*s[0]*eps;    int r = 0;    for (int i = 0; i < s.length; i++) {      if (s[i] > tol) {        r++;      }    }    return r;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -