⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 thresholdvisualizepanel.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ThresholdVisualizePanel.java *    Copyright (C) 2003 Dale Fletcher * */package weka.gui.visualize;import weka.classifiers.Classifier;import weka.classifiers.evaluation.EvaluationUtils;import weka.classifiers.evaluation.ThresholdCurve;import weka.core.FastVector;import weka.core.Instances;import weka.core.SingleIndex;import weka.core.Utils;import java.awt.BorderLayout;import java.awt.event.ActionEvent;import java.awt.event.ActionListener;import java.awt.event.WindowAdapter;import java.awt.event.WindowEvent;import java.io.BufferedReader;import java.io.FileReader;import javax.swing.BorderFactory;import javax.swing.JFrame;import javax.swing.border.TitledBorder;/**  * This panel is a VisualizePanel, with the added ablility to display the * area under the ROC curve if an ROC curve is chosen. * * @author Dale Fletcher (dale@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.3 $ */public class ThresholdVisualizePanel   extends VisualizePanel {  /** The string to add to the Plot Border. */  private String m_ROCString="";   /** Original border text */  private String m_savePanelBorderText;  /**   * default constructor   */  public ThresholdVisualizePanel() {    super();    // Save the current border text    TitledBorder tb=(TitledBorder) m_plotSurround.getBorder();    m_savePanelBorderText = tb.getTitle();  }    /**   * Set the string with ROC area   * @param str ROC area string to add to border   */    public void setROCString(String str) {    m_ROCString=str;  }  /**   * This extracts the ROC area string    * @return ROC area string    */  public String getROCString() {    return m_ROCString;  }  /**   * This overloads VisualizePanel's setUpComboBoxes to add    * ActionListeners to watch for when the X/Y Axis comboboxes   * are changed.    * @param inst a set of instances with data for plotting   */  public void setUpComboBoxes(Instances inst) {    super.setUpComboBoxes(inst);    m_XCombo.addActionListener(new ActionListener() {	public void actionPerformed(ActionEvent e) {	  setBorderText();	}    });    m_YCombo.addActionListener(new ActionListener() {	public void actionPerformed(ActionEvent e) {	  setBorderText();	}    });    // Just in case the default is ROC    setBorderText();  }  /**   * This checks the current selected X/Y Axis comboBoxes to see if    * an ROC graph is selected. If so, add the ROC area string to the   * plot border, otherwise display the original border text.   */  private void setBorderText() {    String xs = m_XCombo.getSelectedItem().toString();    String ys = m_YCombo.getSelectedItem().toString();    if (xs.equals("X: False Positive Rate (Num)") && ys.equals("Y: True Positive Rate (Num)"))   {        m_plotSurround.setBorder((BorderFactory.createTitledBorder(m_savePanelBorderText+" "+m_ROCString)));    } else        m_plotSurround.setBorder((BorderFactory.createTitledBorder(m_savePanelBorderText)));   }  /**   * displays the previously saved instances   *    * @param insts	the instances to display   * @throws Exception	if display is not possible   */  protected void openVisibleInstances(Instances insts) throws Exception {    super.openVisibleInstances(insts);    setROCString(	"(Area under ROC = " 	+ Utils.doubleToString(ThresholdCurve.getROCArea(insts), 4) + ")");        setBorderText();  }    /**   * Starts the ThresholdVisualizationPanel with parameters from the command line. <p/>   *    * Valid options are: <p/>   *  -h <br/>   *  lists all the commandline parameters <p/>   *     *  -t file <br/>   *  Dataset to process with given classifier. <p/>   *     *  -W classname <br/>   *  Full classname of classifier to run.<br/>   *  Options after '--' are passed to the classifier. <br/>   *  (default weka.classifiers.functions.Logistic) <p/>   *     *  -r number <br/>   *  The number of runs to perform (default 2). <p/>   *     *  -x number <br/>   *  The number of Cross-validation folds (default 10). <p/>   *     *  -l file <br/>   *  Previously saved threshold curve ARFF file. <p/>   *   * @param args optional commandline parameters   */  public static void main(String [] args) {    Instances 		inst;    Classifier 		classifier;    int			runs;    int			folds;    String 		tmpStr;    boolean		compute;    Instances 		result;    String[] 		options;    SingleIndex		classIndex;    SingleIndex		valueIndex;    int			seed;        inst       = null;    classifier = null;    runs       = 2;    folds      = 10;    compute    = true;    result     = null;    classIndex = null;    valueIndex = null;    seed       = 1;        try {      // help?      if (Utils.getFlag('h', args)) {	System.out.println("\nOptions for " + ThresholdVisualizePanel.class.getName() + ":\n");	System.out.println("-h\n\tThis help.");	System.out.println("-t <file>\n\tDataset to process with given classifier.");	System.out.println("-c <num>\n\tThe class index. first and last are valid, too (default: last).");	System.out.println("-C <num>\n\tThe index of the class value to get the the curve for (default: first).");	System.out.println("-W <classname>\n\tFull classname of classifier to run.\n\tOptions after '--' are passed to the classifier.\n\t(default: weka.classifiers.functions.Logistic)");	System.out.println("-r <number>\n\tThe number of runs to perform (default: 1).");	System.out.println("-x <number>\n\tThe number of Cross-validation folds (default: 10).");	System.out.println("-S <number>\n\tThe seed value for randomizing the data (default: 1).");	System.out.println("-l <file>\n\tPreviously saved threshold curve ARFF file.");	return;      }            // regular options      tmpStr = Utils.getOption('l', args);      if (tmpStr.length() != 0) {	result = new Instances(new BufferedReader(new FileReader(tmpStr)));	compute = false;      }            if (compute) {	tmpStr = Utils.getOption('r', args);	if (tmpStr.length() != 0)	  runs = Integer.parseInt(tmpStr);	else	  runs = 1;		tmpStr = Utils.getOption('x', args);	if (tmpStr.length() != 0)	  folds = Integer.parseInt(tmpStr);	else	  folds = 10;		tmpStr = Utils.getOption('S', args);	if (tmpStr.length() != 0)	  seed = Integer.parseInt(tmpStr);	else	  seed = 1;		tmpStr = Utils.getOption('t', args);	if (tmpStr.length() != 0) {	  inst = new Instances(new BufferedReader(new FileReader(tmpStr)));	  inst.setClassIndex(inst.numAttributes() - 1);	}		tmpStr = Utils.getOption('W', args);	if (tmpStr.length() != 0) {	  options = Utils.partitionOptions(args);	}	else {	  tmpStr = weka.classifiers.functions.Logistic.class.getName();	  options = new String[0];	}	classifier = Classifier.forName(tmpStr, options);		tmpStr = Utils.getOption('c', args);	if (tmpStr.length() != 0)	  classIndex = new SingleIndex(tmpStr);	else	  classIndex = new SingleIndex("last");		tmpStr = Utils.getOption('C', args);	if (tmpStr.length() != 0)	  valueIndex = new SingleIndex(tmpStr);	else	  valueIndex = new SingleIndex("first");      }            // compute if necessary      if (compute) {	if (classIndex != null) {	  classIndex.setUpper(inst.numAttributes() - 1);	  inst.setClassIndex(classIndex.getIndex());	}	else {	  inst.setClassIndex(inst.numAttributes() - 1);	}		if (valueIndex != null) {	  valueIndex.setUpper(inst.classAttribute().numValues() - 1);	}		ThresholdCurve tc = new ThresholdCurve();	EvaluationUtils eu = new EvaluationUtils();	FastVector predictions = new FastVector();	for (int i = 0; i < runs; i++) {	  eu.setSeed(seed + i);	  predictions.appendElements(eu.getCVPredictions(classifier, inst, folds));	}		if (valueIndex != null)	  result = tc.getCurve(predictions, valueIndex.getIndex());	else	  result = tc.getCurve(predictions);      }            // setup GUI      ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();      vmc.setROCString("(Area under ROC = " + 	  Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")");      if (compute)     	vmc.setName(	    result.relationName() 	    + ". (Class value " + inst.classAttribute().value(valueIndex.getIndex()) + ")");      else	vmc.setName(	    result.relationName()	    + " (display only)");      PlotData2D tempd = new PlotData2D(result);      tempd.setPlotName(result.relationName());      tempd.addInstanceNumberAttribute();      vmc.addPlot(tempd);            String plotName = vmc.getName();       final JFrame jf = new JFrame("Weka Classifier Visualize: "+plotName);      jf.setSize(500,400);      jf.getContentPane().setLayout(new BorderLayout());            jf.getContentPane().add(vmc, BorderLayout.CENTER);      jf.addWindowListener(new WindowAdapter() {	public void windowClosing(WindowEvent e) {	  jf.dispose();	}      });            jf.setVisible(true);    }    catch (Exception e) {      e.printStackTrace();    }  }} 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -