📄 explorer.props
字号:
# This props file contains default values for the Weka Explorer.## Notes:# - backslashes within options, e.g., for the default "Classifier", need# to be doubled (the backslashes get interpreted already when a property# is read).## Author FracPete (fracpete at waikato dot ac dot nz)# Version $Revision: 1.3 $# if set to true the Capabilities filters in the GOE will be initialized# based on the full dataset that has been loaded into the Explorer # otherwise only the header (true|false)# Note: The tabs in the Explorer have their own class combobox, which means # that the data has to be inspected several times (changing the class# combobox only leads to an inspection of the data in the current tab), # which can be slow on big datasets.InitGenericObjectEditorFilter=True# the default filter, including options (can be left empty)Filter=# the default classifier in the classify tab, including options# (default is ZeroR)Classifier=weka.classifiers.rules.ZeroR# the default test mode in the classify tab # (according to "testMode" variable in startClassifier method)# 1 - cross-validation# 2 - percentage split# 3 - use training set# 4 - supplied test set# (default is 1 - CV)ClassifierTestMode=1# the default number of folds for CV in the classify tab # (default is 10)ClassifierCrossvalidationFolds=10# the default percentage split % in the classify tab (integer: 1-99)# (default is 66)ClassifierPercentageSplit=66# whether the classifier model is output (true|false)# (default is true)ClassifierOutputModel=true# whether additional per-class stats of the classifier model are # output (true|false)# (default is true)ClassifierOutputPerClassStats=true# whether the entropy based evaluation measures of the classifier model are # output (true|false)# (default is false)ClassifierOutputEntropyEvalMeasures=false# whether the confusion matrix is output for the classifier (true|false)# (default is true)ClassifierOutputConfusionMatrix=true# whether the predictions of the classifier are stored for visulization # purposes (true|false)# (default is true)ClassifierStorePredictionsForVis=true# whether the predictions of the classifier output as well (true|false)# (default is false)ClassifierOutputPredictions=false# whether the evaluation of the classifier is done cost-sensitively (true|false)# (default is false)# Note: a cost matrix still has to be provided!ClassifierCostSensitiveEval=false# the default random seed in the classify tab# (default is 1)ClassifierRandomSeed=1# whether the order is preserved in case of percentage split in the classifier # tab # (default is false)ClassifierPreserveOrder=false# the default clusterer, including options# (default is EM)Clusterer=weka.clusterers.EM# the default test mode in the cluster tab # (according to "testMode" variable in startClusterer method)# 2 - percentage split# 3 - use training set# 4 - supplied test set# 5 - classes to clusters evaluation# (default is 3 - training set)ClustererTestMode=3# whether the clusters are stored for visualization purposes (true|false)# (default is true)ClustererStoreClustersForVis=true# the default associator, including options# (default is Apriori)Associator=weka.associations.Apriori# the default attribute evaluator, including options# (default is CfsSubsetEval)ASEvaluation=weka.attributeSelection.CfsSubsetEval# the default attribute selection search scheme, including options# (default is BestFirst)ASSearch=weka.attributeSelection.BestFirst# the default test mode in the attribute selection tab # (according to "testMode" variable in startAttributeSelection method)# 0 - use full training set# 1 - cross-validation# (default is 0 - full training set)ASTestMode=0# the default number of folds for CV in the attribute selection tab # (default is 10)ASCrossvalidationFolds=10# the default random seed in the attribute selection tab# (default is 1)ASRandomSeed=1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -