⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 center.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Center.java * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand * */package weka.filters.unsupervised.attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.SparseInstance;import weka.core.Capabilities.Capability;import weka.filters.UnsupervisedFilter;/**  <!-- globalinfo-start --> * Centers all numeric attributes in the given dataset to have zero mean (apart from the class attribute, if set). * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -unset-class-temporarily *  Unsets the class index temporarily before the filter is *  applied to the data. *  (default: no)</pre> *  <!-- options-end --> *  * @author Eibe Frank (eibe@cs.waikato.ac.nz)  * @author FracPete (fracpete at waikato dot ac dot nz)  * @version $Revision: 1.2 $ */public class Center   extends PotentialClassIgnorer   implements UnsupervisedFilter {  /** for serialization */  private static final long serialVersionUID = -9101338448900581023L;    /** The means */  private double[] m_Means;  /**   * Returns a string describing this filter   *   * @return 		a description of the filter suitable for   * 			displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Centers all numeric attributes in the given dataset "      + "to have zero mean (apart from the class attribute, if set).";  }  /**    * Returns the Capabilities of this filter.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enableAllAttributes();    result.enable(Capability.MISSING_VALUES);        // class    result.enableAllClasses();    result.enable(Capability.MISSING_CLASS_VALUES);    result.enable(Capability.NO_CLASS);        return result;  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo 	an Instances object containing the input    * 				instance structure (any instances contained    * 				in the object are ignored - only the structure    * 				is required).   * @return true 		if the outputFormat may be collected immediately   * @throws Exception 		if the input format can't be set successfully   */  public boolean setInputFormat(Instances instanceInfo) throws Exception {    super.setInputFormat(instanceInfo);    setOutputFormat(instanceInfo);    m_Means = null;    return true;  }  /**   * Input an instance for filtering. Filter requires all   * training instances be read before producing output.   *   * @param instance 			the input instance   * @return true 			if the filtered instance may now be    * 					collected with output().   * @throws IllegalStateException 	if no input format has been set.   */  public boolean input(Instance instance) {    if (getInputFormat() == null)      throw new IllegalStateException("No input instance format defined");    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (m_Means == null) {      bufferInput(instance);      return false;    }     else {      convertInstance(instance);      return true;    }  }  /**   * Signify that this batch of input to the filter is finished.    * If the filter requires all instances prior to filtering,   * output() may now be called to retrieve the filtered instances.   *   * @return true 			if there are instances pending output   * @throws IllegalStateException 	if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null)      throw new IllegalStateException("No input instance format defined");        if (m_Means == null) {      Instances input = getInputFormat();      m_Means = new double[input.numAttributes()];      for (int i = 0; i < input.numAttributes(); i++) {	if (input.attribute(i).isNumeric() &&	    (input.classIndex() != i)) {	  m_Means[i] = input.meanOrMode(i);	}      }      // Convert pending input instances      for (int i = 0; i < input.numInstances(); i++)	convertInstance(input.instance(i));    }        // Free memory    flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Convert a single instance over. The converted instance is    * added to the end of the output queue.   *   * @param instance 	the instance to convert   */  private void convertInstance(Instance instance) {    Instance inst = null;        if (instance instanceof SparseInstance) {      double[] newVals = new double[instance.numAttributes()];      int[] newIndices = new int[instance.numAttributes()];      double[] vals = instance.toDoubleArray();      int ind = 0;      for (int j = 0; j < instance.numAttributes(); j++) {	double value;	if (instance.attribute(j).isNumeric() &&	    (!Instance.isMissingValue(vals[j])) &&	    (getInputFormat().classIndex() != j)) {	  	  value = vals[j] - m_Means[j];	  if (value != 0.0) {	    newVals[ind] = value;	    newIndices[ind] = j;	    ind++;	  }	} else {	  value = vals[j];	  if (value != 0.0) {	    newVals[ind] = value;	    newIndices[ind] = j;	    ind++;	  }	}      }	      double[] tempVals = new double[ind];      int[] tempInd = new int[ind];      System.arraycopy(newVals, 0, tempVals, 0, ind);      System.arraycopy(newIndices, 0, tempInd, 0, ind);      inst = new SparseInstance(instance.weight(), tempVals, tempInd,                                instance.numAttributes());    }     else {      double[] vals = instance.toDoubleArray();      for (int j = 0; j < getInputFormat().numAttributes(); j++) {	if (instance.attribute(j).isNumeric() &&	    (!Instance.isMissingValue(vals[j])) &&	    (getInputFormat().classIndex() != j)) {	  vals[j] = (vals[j] - m_Means[j]);	}      }	      inst = new Instance(instance.weight(), vals);    }        inst.setDataset(instance.dataset());        push(inst);  }  /**   * Main method for running this filter.   *   * @param args 	should contain arguments to the filter: use -h for help   */  public static void main(String [] args) {    runFilter(new Center(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -