⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clustermembership.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (outputFormatPeek() != null) {      convertInstance(instance);      return true;    }    bufferInput(instance);    return false;  }  /**   * Converts logs back to density values.   *    * @param j the index of the clusterer   * @param in the instance to convert the logs back   * @return the densities   * @throws Exception if something goes wrong   */  protected double[] logs2densities(int j, Instance in) throws Exception {    double[] logs = m_clusterers[j].logJointDensitiesForInstance(in);    for (int i = 0; i < logs.length; i++) {      logs[i] += Math.log(m_priors[j]);    }    return logs;  }  /**   * Convert a single instance over. The converted instance is added to    * the end of the output queue.   *   * @param instance the instance to convert   * @throws Exception if something goes wrong   */  protected void convertInstance(Instance instance) throws Exception {        // set up values    double [] instanceVals = new double[outputFormatPeek().numAttributes()];    double [] tempvals;    if (instance.classIndex() >= 0) {      tempvals = new double[outputFormatPeek().numAttributes() - 1];    } else {      tempvals = new double[outputFormatPeek().numAttributes()];    }    int pos = 0;    for (int j = 0; j < m_clusterers.length; j++) {      if (m_clusterers[j] != null) {	double [] probs;	if (m_removeAttributes != null) {	  m_removeAttributes.input(instance);	  probs = logs2densities(j, m_removeAttributes.output());	} else {	  probs = logs2densities(j, instance);	}	System.arraycopy(probs, 0, tempvals, pos, probs.length);	pos += probs.length;      }    }    tempvals = Utils.logs2probs(tempvals);    System.arraycopy(tempvals, 0, instanceVals, 0, tempvals.length);    if (instance.classIndex() >= 0) {      instanceVals[instanceVals.length - 1] = instance.classValue();    }        push(new Instance(instance.weight(), instanceVals));  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {        Vector newVector = new Vector(2);        newVector.      addElement(new Option("\tFull name of clusterer to use. eg:\n"	                    + "\t\tweka.clusterers.EM\n"			    + "\tAdditional options after the '--'.\n"			    + "\t(default: weka.clusterers.EM)",			    "W", 1, "-W <clusterer name>"));    newVector.      addElement(new Option("\tThe range of attributes the clusterer should ignore."			    +"\n\t(the class attribute is automatically ignored)",			    "I", 1,"-I <att1,att2-att4,...>"));    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -W &lt;clusterer name&gt;   *  Full name of clusterer to use. eg:   *   weka.clusterers.EM   *  Additional options after the '--'.   *  (default: weka.clusterers.EM)</pre>   *    * <pre> -I &lt;att1,att2-att4,...&gt;   *  The range of attributes the clusterer should ignore.   *  (the class attribute is automatically ignored)</pre>   *    <!-- options-end -->   *   * Options after the -- are passed on to the clusterer.   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String clustererString = Utils.getOption('W', options);    if (clustererString.length() == 0)      clustererString = weka.clusterers.EM.class.getName();    setDensityBasedClusterer((DensityBasedClusterer)Utils.			     forName(DensityBasedClusterer.class, clustererString,				     Utils.partitionOptions(options)));    setIgnoredAttributeIndices(Utils.getOption('I', options));    Utils.checkForRemainingOptions(options);  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] clustererOptions = new String [0];    if ((m_clusterer != null) &&	(m_clusterer instanceof OptionHandler)) {      clustererOptions = ((OptionHandler)m_clusterer).getOptions();    }    String [] options = new String [clustererOptions.length + 5];    int current = 0;    if (!getIgnoredAttributeIndices().equals("")) {      options[current++] = "-I";      options[current++] = getIgnoredAttributeIndices();    }        if (m_clusterer != null) {      options[current++] = "-W";       options[current++] = getDensityBasedClusterer().getClass().getName();    }    options[current++] = "--";    System.arraycopy(clustererOptions, 0, options, current,		     clustererOptions.length);    current += clustererOptions.length;        while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "A filter that uses a density-based clusterer to generate cluster "      + "membership values; filtered instances are composed of these values "      + "plus the class attribute (if set in the input data). If a (nominal) "      + "class attribute is set, the clusterer is run separately for each "      + "class. The class attribute (if set) and any user-specified "      + "attributes are ignored during the clustering operation";  }    /**   * Returns a description of this option suitable for display   * as a tip text in the gui.   *   * @return description of this option   */  public String clustererTipText() {    return "The clusterer that will generate membership values for the instances.";  }  /**   * Set the clusterer for use in filtering   *   * @param newClusterer the clusterer to use   */  public void setDensityBasedClusterer(DensityBasedClusterer newClusterer) {    m_clusterer = newClusterer;  }  /**   * Get the clusterer used by this filter   *   * @return the clusterer used   */  public DensityBasedClusterer getDensityBasedClusterer() {    return m_clusterer;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String ignoredAttributeIndicesTipText() {    return "The range of attributes to be ignored by the clusterer. eg: first-3,5,9-last";  }  /**   * Gets ranges of attributes to be ignored.   *   * @return a string containing a comma-separated list of ranges   */  public String getIgnoredAttributeIndices() {    if (m_ignoreAttributesRange == null) {      return "";    } else {      return m_ignoreAttributesRange.getRanges();    }  }  /**   * Sets the ranges of attributes to be ignored. If provided string   * is null, no attributes will be ignored.   *   * @param rangeList a string representing the list of attributes.    * eg: first-3,5,6-last   * @throws IllegalArgumentException if an invalid range list is supplied    */  public void setIgnoredAttributeIndices(String rangeList) {    if ((rangeList == null) || (rangeList.length() == 0)) {      m_ignoreAttributesRange = null;    } else {      m_ignoreAttributesRange = new Range();      m_ignoreAttributesRange.setRanges(rangeList);    }  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter: use -h for help   */  public static void main(String [] argv) {    runFilter(new ClusterMembership(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -