⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 propositionaltomultiinstance.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * PropositionalToMultiInstance.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */package weka.filters.unsupervised.attribute;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.RelationalLocator;import weka.core.StringLocator;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.filters.Filter;import weka.filters.UnsupervisedFilter;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/**  <!-- globalinfo-start --> * Converts the propositional instance dataset into multi-instance dataset (with relational attribute). When normalize or standardize a multi-instance dataset, a MIToSingleInstance filter can be applied first to convert the multi-instance dataset into propositional instance dataset. After normalization or standardization, may use this PropositionalToMultiInstance filter to convert the data back to multi-instance format.<br/> * <br/> * Note: the first attribute of the original propositional instance dataset must be a nominal attribute which is expected to be bagId attribute. * <p/> <!-- globalinfo-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -S &lt;num&gt; *  The seed for the randomization of the order of bags. (default 1)</pre> *  * <pre> -R *  Randomizes the order of the produced bags after the generation. (default off)</pre> *  <!-- options-end --> * * @author Lin Dong (ld21@cs.waikato.ac.nz)  * @version $Revision: 1.5 $ * @see MultiInstanceToPropositional */public class PropositionalToMultiInstance   extends Filter  implements OptionHandler, UnsupervisedFilter {  /** for serialization */  private static final long serialVersionUID = 5825873573912102482L;  /** the seed for randomizing, default is 1 */  protected int m_Seed = 1;    /** whether to randomize the output data */  protected boolean m_Randomize = false;  /** Indices of string attributes in the bag */  protected StringLocator m_BagStringAtts = null;  /** Indices of relational attributes in the bag */  protected RelationalLocator m_BagRelAtts = null;    /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return          "Converts the propositional instance dataset into multi-instance "      + "dataset (with relational attribute). When normalize or standardize a "      + "multi-instance dataset, a MIToSingleInstance filter can be applied "      + "first to convert the multi-instance dataset into propositional "      + "instance dataset. After normalization or standardization, may use "      + "this PropositionalToMultiInstance filter to convert the data back to "      + "multi-instance format.\n\n"      + "Note: the first attribute of the original propositional instance "      + "dataset must be a nominal attribute which is expected to be bagId "      + "attribute.";  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector result = new Vector();      result.addElement(new Option(        "\tThe seed for the randomization of the order of bags."        + "\t(default 1)",        "S", 1, "-S <num>"));      result.addElement(new Option(        "\tRandomizes the order of the produced bags after the generation."        + "\t(default off)",        "R", 0, "-R"));      return result.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -S &lt;num&gt;   *  The seed for the randomization of the order of bags. (default 1)</pre>   *    * <pre> -R   *  Randomizes the order of the produced bags after the generation. (default off)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String        tmpStr;        setRandomize(Utils.getFlag('R', options));        tmpStr = Utils.getOption('S', options);    if (tmpStr.length() != 0)      setSeed(Integer.parseInt(tmpStr));    else      setSeed(1);  }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    Vector        result;        result = new Vector();        result.add("-S");    result.add("" + getSeed());        if (m_Randomize)      result.add("-R");    return (String[]) result.toArray(new String[result.size()]);  }  /**   * Sets the new seed for randomizing the order of the generated data   *    * @param value     the new seed value   */  public void setSeed(int value) {    m_Seed = value;  }    /**   * Returns the current seed value for randomizing the order of the generated   * data   *    * @return          the current seed value   */  public int getSeed() {    return m_Seed;  }    /**   * Sets whether the order of the generated data is randomized   *    * @param value     whether to randomize or not   */  public void setRandomize(boolean value) {    m_Randomize = value;  }    /**   * Gets whether the order of the generated is randomized   *    * @return      true if the order is randomized   */  public boolean getRandomize() {    return m_Randomize;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String randomizeTipText() {    return "Whether the order of the generated data is randomized.";  }  /**    * Returns the Capabilities of this filter.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.STRING_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);        // class    result.enableAllClasses();    result.enable(Capability.MISSING_CLASS_VALUES);    result.enable(Capability.NO_CLASS);        return result;  }    /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input    * instance structure (any instances contained in the object are    * ignored - only the structure is required).   * @return true if the outputFormat may be collected immediately   * @throws Exception if the input format can't be set    * successfully   */  public boolean setInputFormat(Instances instanceInfo)     throws Exception {    if (instanceInfo.attribute(0).type()!= Attribute.NOMINAL) {      throw new Exception("The first attribute type of the original propositional instance dataset must be Nominal!");    }    super.setInputFormat(instanceInfo);    /* create a new output format (multi-instance format) */    Instances newData = instanceInfo.stringFreeStructure();    Attribute attBagIndex = (Attribute) newData.attribute(0).copy();    Attribute attClass = (Attribute) newData.classAttribute().copy();    // remove the bagIndex attribute    newData.deleteAttributeAt(0);    // remove the class attribute    newData.setClassIndex(-1);    newData.deleteAttributeAt(newData.numAttributes() - 1);    FastVector attInfo = new FastVector(3);     attInfo.addElement(attBagIndex);    attInfo.addElement(new Attribute("bag", newData)); // relation-valued attribute    attInfo.addElement(attClass);    Instances data = new Instances("Multi-Instance-Dataset", attInfo, 0);     data.setClassIndex(data.numAttributes() - 1);    super.setOutputFormat(data.stringFreeStructure());    m_BagStringAtts = new StringLocator(data.attribute(1).relation());    m_BagRelAtts    = new RelationalLocator(data.attribute(1).relation());        return true;  }  /**   * adds a new bag out of the given data and adds it to the output   *    * @param input       the intput dataset   * @param output      the dataset this bag is added to   * @param bagInsts    the instances in this bag   * @param bagIndex    the bagIndex of this bag   * @param classValue  the associated class value   * @param bagWeight   the weight of the bag   */  protected void addBag(      Instances input,      Instances output,      Instances bagInsts,       int bagIndex,       double classValue,       double bagWeight) {        // copy strings/relational values    for (int i = 0; i < bagInsts.numInstances(); i++) {      RelationalLocator.copyRelationalValues(	  bagInsts.instance(i), false, 	  input, m_InputRelAtts,	  bagInsts, m_BagRelAtts);      StringLocator.copyStringValues(	  bagInsts.instance(i), false, 	  input, m_InputStringAtts,	  bagInsts, m_BagStringAtts);    }        int value = output.attribute(1).addRelation(bagInsts);    Instance newBag = new Instance(output.numAttributes());            newBag.setValue(0, bagIndex);    newBag.setValue(2, classValue);    newBag.setValue(1, value);    newBag.setWeight(bagWeight);    newBag.setDataset(output);    output.add(newBag);  }  /**   * Adds an output instance to the queue. The derived class should use this   * method for each output instance it makes available.    *   * @param instance the instance to be added to the queue.   */  protected void push(Instance instance) {    if (instance != null) {      super.push(instance);      // set correct references    }  }    /**   * Signify that this batch of input to the filter is finished.    * If the filter requires all instances prior to filtering,   * output() may now be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @throws IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    Instances input = getInputFormat();    input.sort(0);   // make sure that bagID is sorted    Instances output = getOutputFormat();    Instances bagInsts = output.attribute(1).relation();    Instance inst = new Instance(bagInsts.numAttributes());    inst.setDataset(bagInsts);    double bagIndex   = input.instance(0).value(0);    double classValue = input.instance(0).classValue();     double bagWeight  = 0.0;    // Convert pending input instances    for(int i = 0; i < input.numInstances(); i++) {      double currentBagIndex = input.instance(i).value(0);      // copy the propositional instance value, except the bagIndex and the class value      for (int j = 0; j < input.numAttributes() - 2; j++)         inst.setValue(j, input.instance(i).value(j + 1));      inst.setWeight(input.instance(i).weight());      if (currentBagIndex == bagIndex){        bagInsts.add(inst);        bagWeight += inst.weight();      }      else{        addBag(input, output, bagInsts, (int) bagIndex, classValue, bagWeight);        bagInsts   = bagInsts.stringFreeStructure();          bagInsts.add(inst);        bagIndex   = currentBagIndex;        classValue = input.instance(i).classValue();        bagWeight  = inst.weight();      }    }    // reach the last instance, create and add the last bag    addBag(input, output, bagInsts, (int) bagIndex, classValue, bagWeight);    if (getRandomize())      output.randomize(new Random(getSeed()));        for (int i = 0; i < output.numInstances(); i++)      push(output.instance(i));        // Free memory    flushInput();    m_NewBatch = true;    m_FirstBatchDone = true;        return (numPendingOutput() != 0);  }  /**   * Main method for running this filter.   *   * @param args should contain arguments to the filter:    * use -h for help   */  public static void main(String[] args) {    runFilter(new PropositionalToMultiInstance(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -