⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discretize.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * displaying in the explorer/experimenter gui   */  public String useEqualFrequencyTipText() {    return "If set to true, equal-frequency binning will be used instead of" +      " equal-width binning.";  }    /**   * Get the value of UseEqualFrequency.   *   * @return Value of UseEqualFrequency.   */  public boolean getUseEqualFrequency() {        return m_UseEqualFrequency;  }    /**   * Set the value of UseEqualFrequency.   *   * @param newUseEqualFrequency Value to assign to UseEqualFrequency.   */  public void setUseEqualFrequency(boolean newUseEqualFrequency) {        m_UseEqualFrequency = newUseEqualFrequency;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String binsTipText() {    return "Number of bins.";  }  /**   * Gets the number of bins numeric attributes will be divided into   *   * @return the number of bins.   */  public int getBins() {    return m_NumBins;  }  /**   * Sets the number of bins to divide each selected numeric attribute into   *   * @param numBins the number of bins   */  public void setBins(int numBins) {    m_NumBins = numBins;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String invertSelectionTipText() {    return "Set attribute selection mode. If false, only selected"      + " (numeric) attributes in the range will be discretized; if"      + " true, only non-selected attributes will be discretized.";  }  /**   * Gets whether the supplied columns are to be removed or kept   *   * @return true if the supplied columns will be kept   */  public boolean getInvertSelection() {    return m_DiscretizeCols.getInvert();  }  /**   * Sets whether selected columns should be removed or kept. If true the    * selected columns are kept and unselected columns are deleted. If false   * selected columns are deleted and unselected columns are kept.   *   * @param invert the new invert setting   */  public void setInvertSelection(boolean invert) {    m_DiscretizeCols.setInvert(invert);  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String attributeIndicesTipText() {    return "Specify range of attributes to act on."      + " This is a comma separated list of attribute indices, with"      + " \"first\" and \"last\" valid values. Specify an inclusive"      + " range with \"-\". E.g: \"first-3,5,6-10,last\".";  }  /**   * Gets the current range selection   *   * @return a string containing a comma separated list of ranges   */  public String getAttributeIndices() {    return m_DiscretizeCols.getRanges();  }  /**   * Sets which attributes are to be Discretized (only numeric   * attributes among the selection will be Discretized).   *   * @param rangeList a string representing the list of attributes. Since   * the string will typically come from a user, attributes are indexed from   * 1. <br>   * eg: first-3,5,6-last   * @throws IllegalArgumentException if an invalid range list is supplied    */  public void setAttributeIndices(String rangeList) {    m_DiscretizeCols.setRanges(rangeList);  }  /**   * Sets which attributes are to be Discretized (only numeric   * attributes among the selection will be Discretized).   *   * @param attributes an array containing indexes of attributes to Discretize.   * Since the array will typically come from a program, attributes are indexed   * from 0.   * @throws IllegalArgumentException if an invalid set of ranges   * is supplied    */  public void setAttributeIndicesArray(int [] attributes) {    setAttributeIndices(Range.indicesToRangeList(attributes));  }  /**   * Gets the cut points for an attribute   *   * @param attributeIndex the index (from 0) of the attribute to get the cut points of   * @return an array containing the cutpoints (or null if the   * attribute requested has been discretized into only one interval.)   */  public double [] getCutPoints(int attributeIndex) {    if (m_CutPoints == null) {      return null;    }    return m_CutPoints[attributeIndex];  }  /** Generate the cutpoints for each attribute */  protected void calculateCutPoints() {    m_CutPoints = new double [getInputFormat().numAttributes()] [];    for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) {      if ((m_DiscretizeCols.isInRange(i)) && 	  (getInputFormat().attribute(i).isNumeric()) &&	  (getInputFormat().classIndex() != i)) {	if (m_FindNumBins) {	  findNumBins(i);	} else if (!m_UseEqualFrequency) {	  calculateCutPointsByEqualWidthBinning(i);	} else {	  calculateCutPointsByEqualFrequencyBinning(i);	}      }    }  }   /**   * Set cutpoints for a single attribute.   *   * @param index the index of the attribute to set cutpoints for   */  protected void calculateCutPointsByEqualWidthBinning(int index) {    // Scan for max and min values    double max = 0, min = 1, currentVal;    Instance currentInstance;    for(int i = 0; i < getInputFormat().numInstances(); i++) {      currentInstance = getInputFormat().instance(i);      if (!currentInstance.isMissing(index)) {	currentVal = currentInstance.value(index);	if (max < min) {	  max = min = currentVal;	}	if (currentVal > max) {	  max = currentVal;	}	if (currentVal < min) {	  min = currentVal;	}      }    }    double binWidth = (max - min) / m_NumBins;    double [] cutPoints = null;    if ((m_NumBins > 1) && (binWidth > 0)) {      cutPoints = new double [m_NumBins - 1];      for(int i = 1; i < m_NumBins; i++) {	cutPoints[i - 1] = min + binWidth * i;      }    }    m_CutPoints[index] = cutPoints;  }   /**   * Set cutpoints for a single attribute.   *   * @param index the index of the attribute to set cutpoints for   */  protected void calculateCutPointsByEqualFrequencyBinning(int index) {    // Copy data so that it can be sorted    Instances data = new Instances(getInputFormat());    // Sort input data    data.sort(index);    // Compute weight of instances without missing values    double sumOfWeights = 0;    for (int i = 0; i < data.numInstances(); i++) {      if (data.instance(i).isMissing(index)) {	break;      } else {	sumOfWeights += data.instance(i).weight();      }    }    double freq;    double[] cutPoints = new double[m_NumBins - 1];    if (getDesiredWeightOfInstancesPerInterval() > 0) {      freq = getDesiredWeightOfInstancesPerInterval();      cutPoints = new double[(int)(sumOfWeights / freq)];    } else {      freq = sumOfWeights / m_NumBins;      cutPoints = new double[m_NumBins - 1];    }    // Compute break points    double counter = 0, last = 0;    int cpindex = 0, lastIndex = -1;    for (int i = 0; i < data.numInstances() - 1; i++) {      // Stop if value missing      if (data.instance(i).isMissing(index)) {	break;      }      counter += data.instance(i).weight();      sumOfWeights -= data.instance(i).weight();      // Do we have a potential breakpoint?      if (data.instance(i).value(index) < 	  data.instance(i + 1).value(index)) {	// Have we passed the ideal size?	if (counter >= freq) {	  // Is this break point worse than the last one?	  if (((freq - last) < (counter - freq)) && (lastIndex != -1)) {	    cutPoints[cpindex] = (data.instance(lastIndex).value(index) +				  data.instance(lastIndex + 1).value(index)) / 2;	    counter -= last;	    last = counter;	    lastIndex = i;	  } else {	    cutPoints[cpindex] = (data.instance(i).value(index) +				  data.instance(i + 1).value(index)) / 2;	    counter = 0;	    last = 0;	    lastIndex = -1;	  }	  cpindex++;	  freq = (sumOfWeights + counter) / ((cutPoints.length + 1) - cpindex);	} else {	  lastIndex = i;	  last = counter;	}      }    }    // Check whether there was another possibility for a cut point    if ((cpindex < cutPoints.length) && (lastIndex != -1)) {      cutPoints[cpindex] = (data.instance(lastIndex).value(index) +			    data.instance(lastIndex + 1).value(index)) / 2;            cpindex++;    }    // Did we find any cutpoints?    if (cpindex == 0) {      m_CutPoints[index] = null;    } else {      double[] cp = new double[cpindex];      for (int i = 0; i < cpindex; i++) {	cp[i] = cutPoints[i];      }      m_CutPoints[index] = cp;    }  }  /**   * Optimizes the number of bins using leave-one-out cross-validation.   *   * @param index the attribute index   */  protected void findNumBins(int index) {    double min = Double.MAX_VALUE, max = -Double.MAX_VALUE, binWidth = 0,       entropy, bestEntropy = Double.MAX_VALUE, currentVal;    double[] distribution;    int bestNumBins  = 1;    Instance currentInstance;    // Find minimum and maximum    for (int i = 0; i < getInputFormat().numInstances(); i++) {      currentInstance = getInputFormat().instance(i);      if (!currentInstance.isMissing(index)) {	currentVal = currentInstance.value(index);	if (currentVal > max) {	  max = currentVal;	}	if (currentVal < min) {	  min = currentVal;	}      }    }    // Find best number of bins    for (int i = 0; i < m_NumBins; i++) {      distribution = new double[i + 1];      binWidth = (max - min) / (i + 1);      // Compute distribution      for (int j = 0; j < getInputFormat().numInstances(); j++) {	currentInstance = getInputFormat().instance(j);	if (!currentInstance.isMissing(index)) {	  for (int k = 0; k < i + 1; k++) {	    if (currentInstance.value(index) <= 		(min + (((double)k + 1) * binWidth))) {	      distribution[k] += currentInstance.weight();	      break;	    }	  }	}      }      // Compute cross-validated entropy      entropy = 0;      for (int k = 0; k < i + 1; k++) {	if (distribution[k] < 2) {	  entropy = Double.MAX_VALUE;	  break;	}	entropy -= distribution[k] * Math.log((distribution[k] - 1) / 					      binWidth);      }      // Best entropy so far?      if (entropy < bestEntropy) {	bestEntropy = entropy;	bestNumBins = i + 1;      }    }    // Compute cut points    double [] cutPoints = null;    if ((bestNumBins > 1) && (binWidth > 0)) {      cutPoints = new double [bestNumBins - 1];      for(int i = 1; i < bestNumBins; i++) {	cutPoints[i - 1] = min + binWidth * i;      }    }    m_CutPoints[index] = cutPoints;   }  /**   * Set the output format. Takes the currently defined cutpoints and    * m_InputFormat and calls setOutputFormat(Instances) appropriately.   */  protected void setOutputFormat() {    if (m_CutPoints == null) {      setOutputFormat(null);      return;    }    FastVector attributes = new FastVector(getInputFormat().numAttributes());    int classIndex = getInputFormat().classIndex();    for(int i = 0; i < getInputFormat().numAttributes(); i++) {      if ((m_DiscretizeCols.isInRange(i)) 	  && (getInputFormat().attribute(i).isNumeric())	  && (getInputFormat().classIndex() != i)) {	if (!m_MakeBinary) {	  FastVector attribValues = new FastVector(1);	  if (m_CutPoints[i] == null) {	    attribValues.addElement("'All'");	  } else {	    for(int j = 0; j <= m_CutPoints[i].length; j++) {	      if (j == 0) {		attribValues.addElement("'(-inf-"			+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      } else if (j == m_CutPoints[i].length) {		attribValues.addElement("'("			+ Utils.doubleToString(m_CutPoints[i][j - 1], 6) 					+ "-inf)'");	      } else {		attribValues.addElement("'("			+ Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-"			+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      }	    }	  }	  attributes.addElement(new Attribute(getInputFormat().					      attribute(i).name(),					      attribValues));	} else {	  if (m_CutPoints[i] == null) {	    FastVector attribValues = new FastVector(1);	    attribValues.addElement("'All'");	    attributes.addElement(new Attribute(getInputFormat().						attribute(i).name(),						attribValues));	  } else {	    if (i < getInputFormat().classIndex()) {	      classIndex += m_CutPoints[i].length - 1;	    }	    for(int j = 0; j < m_CutPoints[i].length; j++) {	      FastVector attribValues = new FastVector(2);	      attribValues.addElement("'(-inf-"		      + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      attribValues.addElement("'("		      + Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'");	      attributes.addElement(new Attribute(getInputFormat().						  attribute(i).name(),						  attribValues));	    }	  }	}      } else {	attributes.addElement(getInputFormat().attribute(i).copy());      }    }    Instances outputFormat =       new Instances(getInputFormat().relationName(), attributes, 0);    outputFormat.setClassIndex(classIndex);    setOutputFormat(outputFormat);  }  /**   * Convert a single instance over. The converted instance is added to    * the end of the output queue.   *   * @param instance the instance to convert   */  protected void convertInstance(Instance instance) {    int index = 0;    double [] vals = new double [outputFormatPeek().numAttributes()];    // Copy and convert the values    for(int i = 0; i < getInputFormat().numAttributes(); i++) {      if (m_DiscretizeCols.isInRange(i) && 	  getInputFormat().attribute(i).isNumeric() &&	  (getInputFormat().classIndex() != i)) {	int j;	double currentVal = instance.value(i);	if (m_CutPoints[i] == null) {	  if (instance.isMissing(i)) {	    vals[index] = Instance.missingValue();	  } else {	    vals[index] = 0;	  }	  index++;	} else {	  if (!m_MakeBinary) {	    if (instance.isMissing(i)) {	      vals[index] = Instance.missingValue();	    } else {	      for (j = 0; j < m_CutPoints[i].length; j++) {		if (currentVal <= m_CutPoints[i][j]) {		  break;		}	      }              vals[index] = j;	    }	    index++;	  } else {	    for (j = 0; j < m_CutPoints[i].length; j++) {	      if (instance.isMissing(i)) {                vals[index] = Instance.missingValue();	      } else if (currentVal <= m_CutPoints[i][j]) {                vals[index] = 0;	      } else {                vals[index] = 1;	      }	      index++;	    }	  }   	}      } else {        vals[index] = instance.value(i);	index++;      }    }        Instance inst = null;    if (instance instanceof SparseInstance) {      inst = new SparseInstance(instance.weight(), vals);    } else {      inst = new Instance(instance.weight(), vals);    }    inst.setDataset(getOutputFormat());    copyValues(inst, false, instance.dataset(), getOutputFormat());    inst.setDataset(getOutputFormat());    push(inst);  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter: use -h for help   */  public static void main(String [] argv) {    runFilter(new Discretize(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -