📄 discretize.java
字号:
* displaying in the explorer/experimenter gui */ public String useEqualFrequencyTipText() { return "If set to true, equal-frequency binning will be used instead of" + " equal-width binning."; } /** * Get the value of UseEqualFrequency. * * @return Value of UseEqualFrequency. */ public boolean getUseEqualFrequency() { return m_UseEqualFrequency; } /** * Set the value of UseEqualFrequency. * * @param newUseEqualFrequency Value to assign to UseEqualFrequency. */ public void setUseEqualFrequency(boolean newUseEqualFrequency) { m_UseEqualFrequency = newUseEqualFrequency; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binsTipText() { return "Number of bins."; } /** * Gets the number of bins numeric attributes will be divided into * * @return the number of bins. */ public int getBins() { return m_NumBins; } /** * Sets the number of bins to divide each selected numeric attribute into * * @param numBins the number of bins */ public void setBins(int numBins) { m_NumBins = numBins; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String invertSelectionTipText() { return "Set attribute selection mode. If false, only selected" + " (numeric) attributes in the range will be discretized; if" + " true, only non-selected attributes will be discretized."; } /** * Gets whether the supplied columns are to be removed or kept * * @return true if the supplied columns will be kept */ public boolean getInvertSelection() { return m_DiscretizeCols.getInvert(); } /** * Sets whether selected columns should be removed or kept. If true the * selected columns are kept and unselected columns are deleted. If false * selected columns are deleted and unselected columns are kept. * * @param invert the new invert setting */ public void setInvertSelection(boolean invert) { m_DiscretizeCols.setInvert(invert); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String attributeIndicesTipText() { return "Specify range of attributes to act on." + " This is a comma separated list of attribute indices, with" + " \"first\" and \"last\" valid values. Specify an inclusive" + " range with \"-\". E.g: \"first-3,5,6-10,last\"."; } /** * Gets the current range selection * * @return a string containing a comma separated list of ranges */ public String getAttributeIndices() { return m_DiscretizeCols.getRanges(); } /** * Sets which attributes are to be Discretized (only numeric * attributes among the selection will be Discretized). * * @param rangeList a string representing the list of attributes. Since * the string will typically come from a user, attributes are indexed from * 1. <br> * eg: first-3,5,6-last * @throws IllegalArgumentException if an invalid range list is supplied */ public void setAttributeIndices(String rangeList) { m_DiscretizeCols.setRanges(rangeList); } /** * Sets which attributes are to be Discretized (only numeric * attributes among the selection will be Discretized). * * @param attributes an array containing indexes of attributes to Discretize. * Since the array will typically come from a program, attributes are indexed * from 0. * @throws IllegalArgumentException if an invalid set of ranges * is supplied */ public void setAttributeIndicesArray(int [] attributes) { setAttributeIndices(Range.indicesToRangeList(attributes)); } /** * Gets the cut points for an attribute * * @param attributeIndex the index (from 0) of the attribute to get the cut points of * @return an array containing the cutpoints (or null if the * attribute requested has been discretized into only one interval.) */ public double [] getCutPoints(int attributeIndex) { if (m_CutPoints == null) { return null; } return m_CutPoints[attributeIndex]; } /** Generate the cutpoints for each attribute */ protected void calculateCutPoints() { m_CutPoints = new double [getInputFormat().numAttributes()] []; for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) { if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric()) && (getInputFormat().classIndex() != i)) { if (m_FindNumBins) { findNumBins(i); } else if (!m_UseEqualFrequency) { calculateCutPointsByEqualWidthBinning(i); } else { calculateCutPointsByEqualFrequencyBinning(i); } } } } /** * Set cutpoints for a single attribute. * * @param index the index of the attribute to set cutpoints for */ protected void calculateCutPointsByEqualWidthBinning(int index) { // Scan for max and min values double max = 0, min = 1, currentVal; Instance currentInstance; for(int i = 0; i < getInputFormat().numInstances(); i++) { currentInstance = getInputFormat().instance(i); if (!currentInstance.isMissing(index)) { currentVal = currentInstance.value(index); if (max < min) { max = min = currentVal; } if (currentVal > max) { max = currentVal; } if (currentVal < min) { min = currentVal; } } } double binWidth = (max - min) / m_NumBins; double [] cutPoints = null; if ((m_NumBins > 1) && (binWidth > 0)) { cutPoints = new double [m_NumBins - 1]; for(int i = 1; i < m_NumBins; i++) { cutPoints[i - 1] = min + binWidth * i; } } m_CutPoints[index] = cutPoints; } /** * Set cutpoints for a single attribute. * * @param index the index of the attribute to set cutpoints for */ protected void calculateCutPointsByEqualFrequencyBinning(int index) { // Copy data so that it can be sorted Instances data = new Instances(getInputFormat()); // Sort input data data.sort(index); // Compute weight of instances without missing values double sumOfWeights = 0; for (int i = 0; i < data.numInstances(); i++) { if (data.instance(i).isMissing(index)) { break; } else { sumOfWeights += data.instance(i).weight(); } } double freq; double[] cutPoints = new double[m_NumBins - 1]; if (getDesiredWeightOfInstancesPerInterval() > 0) { freq = getDesiredWeightOfInstancesPerInterval(); cutPoints = new double[(int)(sumOfWeights / freq)]; } else { freq = sumOfWeights / m_NumBins; cutPoints = new double[m_NumBins - 1]; } // Compute break points double counter = 0, last = 0; int cpindex = 0, lastIndex = -1; for (int i = 0; i < data.numInstances() - 1; i++) { // Stop if value missing if (data.instance(i).isMissing(index)) { break; } counter += data.instance(i).weight(); sumOfWeights -= data.instance(i).weight(); // Do we have a potential breakpoint? if (data.instance(i).value(index) < data.instance(i + 1).value(index)) { // Have we passed the ideal size? if (counter >= freq) { // Is this break point worse than the last one? if (((freq - last) < (counter - freq)) && (lastIndex != -1)) { cutPoints[cpindex] = (data.instance(lastIndex).value(index) + data.instance(lastIndex + 1).value(index)) / 2; counter -= last; last = counter; lastIndex = i; } else { cutPoints[cpindex] = (data.instance(i).value(index) + data.instance(i + 1).value(index)) / 2; counter = 0; last = 0; lastIndex = -1; } cpindex++; freq = (sumOfWeights + counter) / ((cutPoints.length + 1) - cpindex); } else { lastIndex = i; last = counter; } } } // Check whether there was another possibility for a cut point if ((cpindex < cutPoints.length) && (lastIndex != -1)) { cutPoints[cpindex] = (data.instance(lastIndex).value(index) + data.instance(lastIndex + 1).value(index)) / 2; cpindex++; } // Did we find any cutpoints? if (cpindex == 0) { m_CutPoints[index] = null; } else { double[] cp = new double[cpindex]; for (int i = 0; i < cpindex; i++) { cp[i] = cutPoints[i]; } m_CutPoints[index] = cp; } } /** * Optimizes the number of bins using leave-one-out cross-validation. * * @param index the attribute index */ protected void findNumBins(int index) { double min = Double.MAX_VALUE, max = -Double.MAX_VALUE, binWidth = 0, entropy, bestEntropy = Double.MAX_VALUE, currentVal; double[] distribution; int bestNumBins = 1; Instance currentInstance; // Find minimum and maximum for (int i = 0; i < getInputFormat().numInstances(); i++) { currentInstance = getInputFormat().instance(i); if (!currentInstance.isMissing(index)) { currentVal = currentInstance.value(index); if (currentVal > max) { max = currentVal; } if (currentVal < min) { min = currentVal; } } } // Find best number of bins for (int i = 0; i < m_NumBins; i++) { distribution = new double[i + 1]; binWidth = (max - min) / (i + 1); // Compute distribution for (int j = 0; j < getInputFormat().numInstances(); j++) { currentInstance = getInputFormat().instance(j); if (!currentInstance.isMissing(index)) { for (int k = 0; k < i + 1; k++) { if (currentInstance.value(index) <= (min + (((double)k + 1) * binWidth))) { distribution[k] += currentInstance.weight(); break; } } } } // Compute cross-validated entropy entropy = 0; for (int k = 0; k < i + 1; k++) { if (distribution[k] < 2) { entropy = Double.MAX_VALUE; break; } entropy -= distribution[k] * Math.log((distribution[k] - 1) / binWidth); } // Best entropy so far? if (entropy < bestEntropy) { bestEntropy = entropy; bestNumBins = i + 1; } } // Compute cut points double [] cutPoints = null; if ((bestNumBins > 1) && (binWidth > 0)) { cutPoints = new double [bestNumBins - 1]; for(int i = 1; i < bestNumBins; i++) { cutPoints[i - 1] = min + binWidth * i; } } m_CutPoints[index] = cutPoints; } /** * Set the output format. Takes the currently defined cutpoints and * m_InputFormat and calls setOutputFormat(Instances) appropriately. */ protected void setOutputFormat() { if (m_CutPoints == null) { setOutputFormat(null); return; } FastVector attributes = new FastVector(getInputFormat().numAttributes()); int classIndex = getInputFormat().classIndex(); for(int i = 0; i < getInputFormat().numAttributes(); i++) { if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric()) && (getInputFormat().classIndex() != i)) { if (!m_MakeBinary) { FastVector attribValues = new FastVector(1); if (m_CutPoints[i] == null) { attribValues.addElement("'All'"); } else { for(int j = 0; j <= m_CutPoints[i].length; j++) { if (j == 0) { attribValues.addElement("'(-inf-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); } else if (j == m_CutPoints[i].length) { attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-inf)'"); } else { attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); } } } attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } else { if (m_CutPoints[i] == null) { FastVector attribValues = new FastVector(1); attribValues.addElement("'All'"); attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } else { if (i < getInputFormat().classIndex()) { classIndex += m_CutPoints[i].length - 1; } for(int j = 0; j < m_CutPoints[i].length; j++) { FastVector attribValues = new FastVector(2); attribValues.addElement("'(-inf-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'"); attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } } } } else { attributes.addElement(getInputFormat().attribute(i).copy()); } } Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0); outputFormat.setClassIndex(classIndex); setOutputFormat(outputFormat); } /** * Convert a single instance over. The converted instance is added to * the end of the output queue. * * @param instance the instance to convert */ protected void convertInstance(Instance instance) { int index = 0; double [] vals = new double [outputFormatPeek().numAttributes()]; // Copy and convert the values for(int i = 0; i < getInputFormat().numAttributes(); i++) { if (m_DiscretizeCols.isInRange(i) && getInputFormat().attribute(i).isNumeric() && (getInputFormat().classIndex() != i)) { int j; double currentVal = instance.value(i); if (m_CutPoints[i] == null) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else { vals[index] = 0; } index++; } else { if (!m_MakeBinary) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else { for (j = 0; j < m_CutPoints[i].length; j++) { if (currentVal <= m_CutPoints[i][j]) { break; } } vals[index] = j; } index++; } else { for (j = 0; j < m_CutPoints[i].length; j++) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else if (currentVal <= m_CutPoints[i][j]) { vals[index] = 0; } else { vals[index] = 1; } index++; } } } } else { vals[index] = instance.value(i); index++; } } Instance inst = null; if (instance instanceof SparseInstance) { inst = new SparseInstance(instance.weight(), vals); } else { inst = new Instance(instance.weight(), vals); } inst.setDataset(getOutputFormat()); copyValues(inst, false, instance.dataset(), getOutputFormat()); inst.setDataset(getOutputFormat()); push(inst); } /** * Main method for testing this class. * * @param argv should contain arguments to the filter: use -h for help */ public static void main(String [] argv) { runFilter(new Discretize(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -