⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discretize.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Discretize.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters.unsupervised.attribute;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.Range;import weka.core.SparseInstance;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.filters.UnsupervisedFilter;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by simple binning. Skips the class attribute if set. * <p/> <!-- globalinfo-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -unset-class-temporarily *  Unsets the class index temporarily before the filter is *  applied to the data. *  (default: no)</pre> *  * <pre> -B &lt;num&gt; *  Specifies the (maximum) number of bins to divide numeric attributes into. *  (default = 10)</pre> *  * <pre> -M &lt;num&gt; *  Specifies the desired weight of instances per bin for *  equal-frequency binning. If this is set to a positive *  number then the -B option will be ignored. *  (default = -1)</pre> *  * <pre> -F *  Use equal-frequency instead of equal-width discretization.</pre> *  * <pre> -O *  Optimize number of bins using leave-one-out estimate *  of estimated entropy (for equal-width discretization). *  If this is set then the -B option will be ignored.</pre> *  * <pre> -R &lt;col1,col2-col4,...&gt; *  Specifies list of columns to Discretize. First and last are valid indexes. *  (default: first-last)</pre> *  * <pre> -V *  Invert matching sense of column indexes.</pre> *  * <pre> -D *  Output binary attributes for discretized attributes.</pre> *  <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.11 $ */public class Discretize   extends PotentialClassIgnorer   implements UnsupervisedFilter, WeightedInstancesHandler {    /** for serialization */  static final long serialVersionUID = -1358531742174527279L;  /** Stores which columns to Discretize */  protected Range m_DiscretizeCols = new Range();  /** The number of bins to divide the attribute into */  protected int m_NumBins = 10;  /** The desired weight of instances per bin */  protected double m_DesiredWeightOfInstancesPerInterval = -1;  /** Store the current cutpoints */  protected double [][] m_CutPoints = null;  /** Output binary attributes for discretized attributes. */  protected boolean m_MakeBinary = false;  /** Find the number of bins using cross-validated entropy. */  protected boolean m_FindNumBins = false;  /** Use equal-frequency binning if unsupervised discretization turned on */  protected boolean m_UseEqualFrequency = false;  /** The default columns to discretize */  protected String m_DefaultCols;  /** Constructor - initialises the filter */  public Discretize() {    m_DefaultCols = "first-last";    setAttributeIndices("first-last");  }  /**    * Another constructor, sets the attribute indices immediately   *    * @param cols the attribute indices   */  public Discretize(String cols) {    m_DefaultCols = cols;    setAttributeIndices(cols);  }  /**   * Gets an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector result = new Vector();    Enumeration enm = super.listOptions();    while (enm.hasMoreElements())      result.add(enm.nextElement());          result.addElement(new Option(	"\tSpecifies the (maximum) number of bins to divide numeric"	+ " attributes into.\n"	+ "\t(default = 10)",	"B", 1, "-B <num>"));        result.addElement(new Option(	"\tSpecifies the desired weight of instances per bin for\n"	+ "\tequal-frequency binning. If this is set to a positive\n"	+ "\tnumber then the -B option will be ignored.\n"	+ "\t(default = -1)",	"M", 1, "-M <num>"));        result.addElement(new Option(	"\tUse equal-frequency instead of equal-width discretization.",	"F", 0, "-F"));        result.addElement(new Option(	"\tOptimize number of bins using leave-one-out estimate\n"+	"\tof estimated entropy (for equal-width discretization).\n"+	"\tIf this is set then the -B option will be ignored.",	"O", 0, "-O"));        result.addElement(new Option(	"\tSpecifies list of columns to Discretize. First"	+ " and last are valid indexes.\n"	+ "\t(default: first-last)",	"R", 1, "-R <col1,col2-col4,...>"));        result.addElement(new Option(	"\tInvert matching sense of column indexes.",	"V", 0, "-V"));        result.addElement(new Option(	"\tOutput binary attributes for discretized attributes.",	"D", 0, "-D"));    return result.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -unset-class-temporarily   *  Unsets the class index temporarily before the filter is   *  applied to the data.   *  (default: no)</pre>   *    * <pre> -B &lt;num&gt;   *  Specifies the (maximum) number of bins to divide numeric attributes into.   *  (default = 10)</pre>   *    * <pre> -M &lt;num&gt;   *  Specifies the desired weight of instances per bin for   *  equal-frequency binning. If this is set to a positive   *  number then the -B option will be ignored.   *  (default = -1)</pre>   *    * <pre> -F   *  Use equal-frequency instead of equal-width discretization.</pre>   *    * <pre> -O   *  Optimize number of bins using leave-one-out estimate   *  of estimated entropy (for equal-width discretization).   *  If this is set then the -B option will be ignored.</pre>   *    * <pre> -R &lt;col1,col2-col4,...&gt;   *  Specifies list of columns to Discretize. First and last are valid indexes.   *  (default: first-last)</pre>   *    * <pre> -V   *  Invert matching sense of column indexes.</pre>   *    * <pre> -D   *  Output binary attributes for discretized attributes.</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    super.setOptions(options);    setMakeBinary(Utils.getFlag('D', options));    setUseEqualFrequency(Utils.getFlag('F', options));    setFindNumBins(Utils.getFlag('O', options));    setInvertSelection(Utils.getFlag('V', options));    String weight = Utils.getOption('M', options);    if (weight.length() != 0) {      setDesiredWeightOfInstancesPerInterval((new Double(weight)).doubleValue());    } else {      setDesiredWeightOfInstancesPerInterval(-1);    }    String numBins = Utils.getOption('B', options);    if (numBins.length() != 0) {      setBins(Integer.parseInt(numBins));    } else {      setBins(10);    }        String convertList = Utils.getOption('R', options);    if (convertList.length() != 0) {      setAttributeIndices(convertList);    } else {      setAttributeIndices(m_DefaultCols);    }    if (getInputFormat() != null) {      setInputFormat(getInputFormat());    }  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    Vector        result;    String[]      options;    int           i;    result = new Vector();    options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);    if (getMakeBinary())      result.add("-D");        if (getUseEqualFrequency())      result.add("-F");        if (getFindNumBins())      result.add("-O");        if (getInvertSelection())      result.add("-V");        result.add("-B");    result.add("" + getBins());        result.add("-M");    result.add("" + getDesiredWeightOfInstancesPerInterval());        if (!getAttributeIndices().equals("")) {      result.add("-R");      result.add(getAttributeIndices());    }    return (String[]) result.toArray(new String[result.size()]);  }  /**    * Returns the Capabilities of this filter.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enableAllAttributes();    result.enable(Capability.MISSING_VALUES);        // class    result.enableAllClasses();    result.enable(Capability.MISSING_CLASS_VALUES);    if (!getMakeBinary())      result.enable(Capability.NO_CLASS);        return result;  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input instance   * structure (any instances contained in the object are ignored - only the   * structure is required).   * @return true if the outputFormat may be collected immediately   * @throws Exception if the input format can't be set successfully   */  public boolean setInputFormat(Instances instanceInfo) throws Exception {    if (m_MakeBinary && m_IgnoreClass) {      throw new IllegalArgumentException("Can't ignore class when " +					 "changing the number of attributes!");    }    super.setInputFormat(instanceInfo);    m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);    m_CutPoints = null;        if (getFindNumBins() && getUseEqualFrequency()) {      throw new IllegalArgumentException("Bin number optimization in conjunction "+					 "with equal-frequency binning not implemented.");    }    // If we implement loading cutfiles, then load     //them here and set the output format    return false;  }  /**   * Input an instance for filtering. Ordinarily the instance is processed   * and made available for output immediately. Some filters require all   * instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @throws IllegalStateException if no input format has been defined.   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (m_CutPoints != null) {      convertInstance(instance);      return true;    }    bufferInput(instance);    return false;  }  /**   * Signifies that this batch of input to the filter is finished. If the    * filter requires all instances prior to filtering, output() may now    * be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @throws IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_CutPoints == null) {      calculateCutPoints();      setOutputFormat();      // If we implement saving cutfiles, save the cuts here      // Convert pending input instances      for(int i = 0; i < getInputFormat().numInstances(); i++) {	convertInstance(getInputFormat().instance(i));      }    }     flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "An instance filter that discretizes a range of numeric"      + " attributes in the dataset into nominal attributes."      + " Discretization is by simple binning. Skips the class"      + " attribute if set.";  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String findNumBinsTipText() {    return "Optimize number of equal-width bins using leave-one-out. Doesn't " +      "work for equal-frequency binning";  }  /**   * Get the value of FindNumBins.   *   * @return Value of FindNumBins.   */  public boolean getFindNumBins() {        return m_FindNumBins;  }    /**   * Set the value of FindNumBins.   *   * @param newFindNumBins Value to assign to FindNumBins.   */  public void setFindNumBins(boolean newFindNumBins) {        m_FindNumBins = newFindNumBins;  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String makeBinaryTipText() {    return "Make resulting attributes binary.";  }  /**   * Gets whether binary attributes should be made for discretized ones.   *   * @return true if attributes will be binarized   */  public boolean getMakeBinary() {    return m_MakeBinary;  }  /**    * Sets whether binary attributes should be made for discretized ones.   *   * @param makeBinary if binary attributes are to be made   */  public void setMakeBinary(boolean makeBinary) {    m_MakeBinary = makeBinary;  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String desiredWeightOfInstancesPerIntervalTipText() {    return "Sets the desired weight of instances per interval for " +      "equal-frequency binning.";  }    /**   * Get the DesiredWeightOfInstancesPerInterval value.   * @return the DesiredWeightOfInstancesPerInterval value.   */  public double getDesiredWeightOfInstancesPerInterval() {    return m_DesiredWeightOfInstancesPerInterval;  }  /**   * Set the DesiredWeightOfInstancesPerInterval value.   * @param newDesiredNumber The new DesiredNumber value.   */  public void setDesiredWeightOfInstancesPerInterval(double newDesiredNumber) {        m_DesiredWeightOfInstancesPerInterval = newDesiredNumber;  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -