⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 addcluster.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    AddCluster.java *    Copyright (C) 2002 Richard Kirkby * */package weka.filters.unsupervised.attribute;import weka.clusterers.Clusterer;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Range;import weka.core.SparseInstance;import weka.core.Utils;import weka.filters.Filter;import weka.filters.UnsupervisedFilter;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * A filter that adds a new nominal attribute representing the cluster assigned to each instance by the specified clustering algorithm. * <p/> <!-- globalinfo-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -W &lt;clusterer specification&gt; *  Full class name of clusterer to use, followed *  by scheme options. eg: *   "weka.clusterers.SimpleKMeans -N 3" *  (default: weka.clusterers.SimpleKMeans)</pre> *  * <pre> -I &lt;att1,att2-att4,...&gt; *  The range of attributes the clusterer should ignore. * </pre> *  <!-- options-end --> * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.8 $ */public class AddCluster   extends Filter   implements UnsupervisedFilter, OptionHandler {    /** for serialization */  static final long serialVersionUID = 7414280611943807337L;  /** The clusterer used to do the cleansing */  protected Clusterer m_Clusterer = new weka.clusterers.SimpleKMeans();  /** Range of attributes to ignore */  protected Range m_IgnoreAttributesRange = null;  /** Filter for removing attributes */  protected Filter m_removeAttributes = new Remove();  /**    * Returns the Capabilities of this filter.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = m_Clusterer.getCapabilities();        result.setMinimumNumberInstances(0);        return result;  }    /**   * tests the data whether the filter can actually handle it   *    * @param instanceInfo	the data to test   * @throws Exception		if the test fails   */  protected void testInputFormat(Instances instanceInfo) throws Exception {    getCapabilities().testWithFail(removeIgnored(instanceInfo));  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input instance   * structure (any instances contained in the object are ignored - only the   * structure is required).   * @return true if the outputFormat may be collected immediately   * @throws Exception if the inputFormat can't be set successfully    */   public boolean setInputFormat(Instances instanceInfo) throws Exception {        super.setInputFormat(instanceInfo);    m_removeAttributes = null;    return false;  }  /**   * filters all attributes that should be ignored   *    * @param data	the data to filter   * @return		the filtered data   * @throws Exception	if filtering fails   */  protected Instances removeIgnored(Instances data) throws Exception {    Instances result = data;        if (m_IgnoreAttributesRange != null || data.classIndex() >= 0) {      m_removeAttributes = new Remove();      String rangeString = "";      if (m_IgnoreAttributesRange != null) {	rangeString += m_IgnoreAttributesRange.getRanges();      }      if (data.classIndex() >= 0) {	if (rangeString.length() > 0) {	  rangeString += "," + (data.classIndex() + 1);	} else {	  rangeString = "" + (data.classIndex() + 1);	}      }      ((Remove) m_removeAttributes).setAttributeIndices(rangeString);      ((Remove) m_removeAttributes).setInvertSelection(false);      m_removeAttributes.setInputFormat(data);      result = Filter.useFilter(data, m_removeAttributes);    }        return result;  }    /**   * Signify that this batch of input to the filter is finished.   *   * @return true if there are instances pending output   * @throws IllegalStateException if no input structure has been defined    */    public boolean batchFinished() throws Exception {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    Instances toFilter = getInputFormat();        if (!isFirstBatchDone()) {      // filter out attributes if necessary      Instances toFilterIgnoringAttributes = removeIgnored(toFilter);      // build the clusterer      m_Clusterer.buildClusterer(toFilterIgnoringAttributes);      // create output dataset with new attribute      Instances filtered = new Instances(toFilter, 0);       FastVector nominal_values = new FastVector(m_Clusterer.numberOfClusters());      for (int i=0; i<m_Clusterer.numberOfClusters(); i++) {	nominal_values.addElement("cluster" + (i+1));       }      filtered.insertAttributeAt(new Attribute("cluster", nominal_values),	  filtered.numAttributes());      setOutputFormat(filtered);    }    // build new dataset    for (int i=0; i<toFilter.numInstances(); i++) {      convertInstance(toFilter.instance(i));    }        flushInput();    m_NewBatch = true;    m_FirstBatchDone = true;    return (numPendingOutput() != 0);  }  /**   * Input an instance for filtering. Ordinarily the instance is processed   * and made available for output immediately. Some filters require all   * instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @throws IllegalStateException if no input format has been defined.   */  public boolean input(Instance instance) throws Exception {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (outputFormatPeek() != null) {      convertInstance(instance);      return true;    }    bufferInput(instance);    return false;  }  /**   * Convert a single instance over. The converted instance is added to    * the end of the output queue.   *   * @param instance the instance to convert   * @throws Exception if something goes wrong   */  protected void convertInstance(Instance instance) throws Exception {    Instance original, processed;    original = instance;    // copy values    double[] instanceVals = new double[instance.numAttributes()+1];    for(int j = 0; j < instance.numAttributes(); j++) {      instanceVals[j] = original.value(j);    }    Instance filteredI = null;    if (m_removeAttributes != null) {      m_removeAttributes.input(instance);      filteredI = m_removeAttributes.output();    } else {      filteredI = instance;    }    // add cluster to end    instanceVals[instance.numAttributes()]      = m_Clusterer.clusterInstance(filteredI);    // create new instance    if (original instanceof SparseInstance) {      processed = new SparseInstance(original.weight(), instanceVals);    } else {      processed = new Instance(original.weight(), instanceVals);    }    processed.setDataset(instance.dataset());    copyValues(processed, false, instance.dataset(), getOutputFormat());    processed.setDataset(getOutputFormat());          push(processed);  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {        Vector newVector = new Vector(2);        newVector.addElement(new Option(	      "\tFull class name of clusterer to use, followed\n"	      + "\tby scheme options. eg:\n"	      + "\t\t\"weka.clusterers.SimpleKMeans -N 3\"\n"	      + "\t(default: weka.clusterers.SimpleKMeans)",	      "W", 1, "-W <clusterer specification>"));        newVector.addElement(new Option(	      "\tThe range of attributes the clusterer should ignore.\n",	      "I", 1,"-I <att1,att2-att4,...>"));    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -W &lt;clusterer specification&gt;   *  Full class name of clusterer to use, followed   *  by scheme options. eg:   *   "weka.clusterers.SimpleKMeans -N 3"   *  (default: weka.clusterers.SimpleKMeans)</pre>   *    * <pre> -I &lt;att1,att2-att4,...&gt;   *  The range of attributes the clusterer should ignore.   * </pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String clustererString = Utils.getOption('W', options);    if (clustererString.length() == 0)      clustererString = weka.clusterers.SimpleKMeans.class.getName();    String[] clustererSpec = Utils.splitOptions(clustererString);    if (clustererSpec.length == 0) {      throw new Exception("Invalid clusterer specification string");    }    String clustererName = clustererSpec[0];    clustererSpec[0] = "";    setClusterer(Clusterer.forName(clustererName, clustererSpec));            setIgnoredAttributeIndices(Utils.getOption('I', options));    Utils.checkForRemainingOptions(options);  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [5];    int current = 0;    options[current++] = "-W"; options[current++] = "" + getClustererSpec();        if (!getIgnoredAttributeIndices().equals("")) {      options[current++] = "-I"; options[current++] = getIgnoredAttributeIndices();    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "A filter that adds a new nominal attribute representing the cluster "      + "assigned to each instance by the specified clustering algorithm.";  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String clustererTipText() {    return "The clusterer to assign clusters with.";  }  /**   * Sets the clusterer to assign clusters with.   *   * @param clusterer The clusterer to be used (with its options set).   */  public void setClusterer(Clusterer clusterer) {    m_Clusterer = clusterer;  }    /**   * Gets the clusterer used by the filter.   *   * @return The clusterer being used.   */  public Clusterer getClusterer() {    return m_Clusterer;  }  /**   * Gets the clusterer specification string, which contains the class name of   * the clusterer and any options to the clusterer.   *   * @return the clusterer string.   */  protected String getClustererSpec() {        Clusterer c = getClusterer();    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String ignoredAttributeIndicesTipText() {    return "The range of attributes to be ignored by the clusterer. eg: first-3,5,9-last";  }  /**   * Gets ranges of attributes to be ignored.   *   * @return a string containing a comma-separated list of ranges   */  public String getIgnoredAttributeIndices() {    if (m_IgnoreAttributesRange == null) {      return "";    } else {      return m_IgnoreAttributesRange.getRanges();    }  }  /**   * Sets the ranges of attributes to be ignored. If provided string   * is null, no attributes will be ignored.   *   * @param rangeList a string representing the list of attributes.    * eg: first-3,5,6-last   * @throws IllegalArgumentException if an invalid range list is supplied    */  public void setIgnoredAttributeIndices(String rangeList) {    if ((rangeList == null) || (rangeList.length() == 0)) {      m_IgnoreAttributesRange = null;    } else {      m_IgnoreAttributesRange = new Range();      m_IgnoreAttributesRange.setRanges(rangeList);    }  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter: use -h for help   */  public static void main(String [] argv) {    runFilter(new AddCluster(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -