⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multiinstancetopropositional.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * MultiInstanceToPropositional.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */package weka.filters.unsupervised.attribute;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Option;import weka.core.OptionHandler;import weka.core.RelationalLocator;import weka.core.SelectedTag;import weka.core.StringLocator;import weka.core.Tag;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.filters.Filter;import weka.filters.UnsupervisedFilter;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * Converts the multi-instance dataset into single instance dataset so that the Nominalize, Standardize and other type of filters or transformation  can be applied to these data for the further preprocessing.<br/> * Note: the first attribute of the converted dataset is a nominal attribute and refers to the bagId. * <p/> <!-- globalinfo-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -A &lt;num&gt; *  The type of weight setting for each prop. instance: *  0.weight = original single bag weight /Total number of *  prop. instance in the corresponding bag; *  1.weight = 1.0; *  2.weight = 1.0/Total number of prop. instance in the  *   corresponding bag;  *  3. weight = Total number of prop. instance / (Total number  *   of bags * Total number of prop. instance in the  *   corresponding bag).  *  (default:0)</pre> *  <!-- options-end --> * * @author Lin Dong (ld21@cs.waikato.ac.nz)  * @version $Revision: 1.6 $ * @see PropositionalToMultiInstance */public class MultiInstanceToPropositional   extends Filter   implements OptionHandler, UnsupervisedFilter, MultiInstanceCapabilitiesHandler {  /** for serialization */  private static final long serialVersionUID = -4102847628883002530L;  /** the total number of bags */  protected int m_NumBags;  /** Indices of string attributes in the bag */  protected StringLocator m_BagStringAtts = null;  /** Indices of relational attributes in the bag */  protected RelationalLocator m_BagRelAtts = null;    /** the total number of the propositional instance in the dataset */  protected int m_NumInstances;    /** weight method: keep the weight to be the same as the original value */  public static final int WEIGHTMETHOD_ORIGINAL = 0;  /** weight method: 1.0 */  public static final int WEIGHTMETHOD_1 = 1;  /** weight method: 1.0 / Total # of prop. instance in the corresp. bag */  public static final int WEIGHTMETHOD_INVERSE1 = 2;  /** weight method: Total # of prop. instance / (Total # of bags * Total # of prop. instance in the corresp. bag) */  public static final int WEIGHTMETHOD_INVERSE2 = 3;  /** weight methods */  public static final Tag[] TAGS_WEIGHTMETHOD = {    new Tag(WEIGHTMETHOD_ORIGINAL,         "keep the weight to be the same as the original value"),    new Tag(WEIGHTMETHOD_1,         "1.0"),    new Tag(WEIGHTMETHOD_INVERSE1,         "1.0 / Total # of prop. instance in the corresp. bag"),    new Tag(WEIGHTMETHOD_INVERSE2,         "Total # of prop. instance / (Total # of bags * Total # of prop. instance in the corresp. bag)")  };  /** the propositional instance weight setting method */  protected int m_WeightMethod = WEIGHTMETHOD_INVERSE2;  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector result = new Vector();      result.addElement(new Option(          "\tThe type of weight setting for each prop. instance:\n"          + "\t0.weight = original single bag weight /Total number of\n"          + "\tprop. instance in the corresponding bag;\n"          + "\t1.weight = 1.0;\n"          + "\t2.weight = 1.0/Total number of prop. instance in the \n"          + "\t\tcorresponding bag; \n"          + "\t3. weight = Total number of prop. instance / (Total number \n"          + "\t\tof bags * Total number of prop. instance in the \n"          + "\t\tcorresponding bag). \n"          + "\t(default:0)",          "A", 1, "-A <num>"));        return result.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -A &lt;num&gt;   *  The type of weight setting for each prop. instance:   *  0.weight = original single bag weight /Total number of   *  prop. instance in the corresponding bag;   *  1.weight = 1.0;   *  2.weight = 1.0/Total number of prop. instance in the    *   corresponding bag;    *  3. weight = Total number of prop. instance / (Total number    *   of bags * Total number of prop. instance in the    *   corresponding bag).    *  (default:0)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String weightString = Utils.getOption('A', options);    if (weightString.length() != 0) {      setWeightMethod(          new SelectedTag(Integer.parseInt(weightString), TAGS_WEIGHTMETHOD));    } else {      setWeightMethod(          new SelectedTag(WEIGHTMETHOD_INVERSE2, TAGS_WEIGHTMETHOD));    }	  }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    Vector        result;        result = new Vector();        result.add("-A");    result.add("" + m_WeightMethod);    return (String[]) result.toArray(new String[result.size()]);  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String weightMethodTipText() {    return "The method used for weighting the instances.";  }  /**   * The new method for weighting the instances.   *   * @param method      the new method   */  public void setWeightMethod(SelectedTag method){    if (method.getTags() == TAGS_WEIGHTMETHOD)      m_WeightMethod = method.getSelectedTag().getID();  }  /**   * Returns the current weighting method for instances.   *    * @return		the current weight method   */  public SelectedTag getWeightMethod(){    return new SelectedTag(m_WeightMethod, TAGS_WEIGHTMETHOD);  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return         "Converts the multi-instance dataset into single instance dataset "      + "so that the Nominalize, Standardize and other type of filters or transformation "      + " can be applied to these data for the further preprocessing.\n"      + "Note: the first attribute of the converted dataset is a nominal "      + "attribute and refers to the bagId.";  }  /**    * Returns the Capabilities of this filter.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.disableAllAttributes();    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.RELATIONAL_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);        // class    result.enableAllClasses();    result.enable(Capability.MISSING_CLASS_VALUES);        // other    result.enable(Capability.ONLY_MULTIINSTANCE);        return result;  }  /**   * Returns the capabilities of this multi-instance filter for the   * relational data (i.e., the bags).   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getMultiInstanceCapabilities() {    Capabilities result = new Capabilities(this);    // attributes    result.enableAllAttributes();    result.disable(Capability.RELATIONAL_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);        // class    result.enableAllClasses();    result.enable(Capability.MISSING_CLASS_VALUES);    result.enable(Capability.NO_CLASS);        // other    result.setMinimumNumberInstances(0);        return result;  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input    * instance structure (any instances contained in the object are    * ignored - only the structure is required).   * @return true if the outputFormat may be collected immediately   * @throws Exception if the input format can't be set    * successfully   */  public boolean setInputFormat(Instances instanceInfo)     throws Exception {    if (instanceInfo.attribute(1).type()!=Attribute.RELATIONAL) {      throw new Exception("Can only handle relational-valued attribute!");    }      super.setInputFormat(instanceInfo);       m_NumBags = instanceInfo.numInstances();    m_NumInstances = 0;    for (int i=0; i<m_NumBags; i++)      m_NumInstances += instanceInfo.instance(i).relationalValue(1).numInstances();    Attribute classAttribute = (Attribute) instanceInfo.classAttribute().copy();    Attribute bagIndex = (Attribute) instanceInfo.attribute(0).copy();    /* create a new output format (propositional instance format) */    Instances newData = instanceInfo.attribute(1).relation().stringFreeStructure();    newData.insertAttributeAt(bagIndex, 0);    newData.insertAttributeAt(classAttribute, newData.numAttributes());    newData.setClassIndex(newData.numAttributes() - 1);    super.setOutputFormat(newData.stringFreeStructure());    m_BagStringAtts = new StringLocator(instanceInfo.attribute(1).relation().stringFreeStructure());    m_BagRelAtts    = new RelationalLocator(instanceInfo.attribute(1).relation().stringFreeStructure());    return true;  }  /**   * Input an instance for filtering. Filter requires all   * training instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @throws IllegalStateException if no input format has been set.   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }    convertInstance(instance);    return true;  }  /**   * Signify that this batch of input to the filter is finished.    * If the filter requires all instances prior to filtering,   * output() may now be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @throws IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    Instances input = getInputFormat();    // Convert pending input instances    for(int i = 0; i < input.numInstances(); i++) {      convertInstance(input.instance(i));    }    // Free memory    flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Convert a single bag over. The converted instances is    * added to the end of the output queue.   *   * @param bag the bag to convert   */  private void convertInstance(Instance bag) {    Instances data = bag.relationalValue(1);    int bagSize = data.numInstances();    double bagIndex = bag.value(0);    double classValue = bag.classValue();    double weight = 0.0;     //the proper weight for each instance in a bag     if (m_WeightMethod == WEIGHTMETHOD_1)      weight = 1.0;    else if (m_WeightMethod == WEIGHTMETHOD_INVERSE1)      weight = (double) 1.0 / bagSize;    else if (m_WeightMethod == WEIGHTMETHOD_INVERSE2)      weight=(double) m_NumInstances / (m_NumBags * bagSize);    else       weight = (double) bag.weight() / bagSize;    Instance newInst;    Instances outputFormat = getOutputFormat().stringFreeStructure();    for (int i = 0; i < bagSize; i++) {      newInst = new Instance (outputFormat.numAttributes());      newInst.setDataset(outputFormat);      newInst.setValue(0,bagIndex);      if (!bag.classIsMissing())        newInst.setClassValue(classValue);      // copy the attribute values to new instance      for (int j = 1; j < outputFormat.numAttributes() - 1; j++){        newInst.setValue(j,data.instance(i).value(j - 1));      }	      newInst.setWeight(weight);      // copy strings/relational values      StringLocator.copyStringValues(	  newInst, false, 	  data, m_BagStringAtts, 	  outputFormat, m_OutputStringAtts);      RelationalLocator.copyRelationalValues(	  newInst, false, 	  data, m_BagRelAtts, 	  outputFormat, m_OutputRelAtts);            push(newInst);    }  }  /**   * Main method for running this filter.   *   * @param args should contain arguments to the filter:    * use -h for help   */  public static void main(String[] args) {    runFilter(new MultiInstanceToPropositional(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -