📄 resample.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Resample.java * Copyright (C) 2002 University of Waikato * */package weka.filters.supervised.instance;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.filters.Filter;import weka.filters.SupervisedFilter;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Produces a random subsample of a dataset using sampling with replacement.The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode (i.e. in the FilteredClassifier), subsequent batches are NOTE resampled. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -S <num> * Specify the random number seed (default 1)</pre> * * <pre> -Z <num> * The size of the output dataset, as a percentage of * the input dataset (default 100)</pre> * * <pre> -B <num> * Bias factor towards uniform class distribution. * 0 = distribution in input data -- 1 = uniform distribution. * (default 0)</pre> * <!-- options-end --> * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.7 $ */public class Resample extends Filter implements SupervisedFilter, OptionHandler { /** for serialization */ static final long serialVersionUID = 7079064953548300681L; /** The subsample size, percent of original set, default 100% */ private double m_SampleSizePercent = 100; /** The random number generator seed */ private int m_RandomSeed = 1; /** The degree of bias towards uniform (nominal) class distribution */ private double m_BiasToUniformClass = 0; /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Produces a random subsample of a dataset using sampling with replacement." + "The original dataset must " + "fit entirely in memory. The number of instances in the generated " + "dataset may be specified. The dataset must have a nominal class " + "attribute. If not, use the unsupervised version. The filter can be " + "made to maintain the class distribution in the subsample, or to bias " + "the class distribution toward a uniform distribution. When used in batch " + "mode (i.e. in the FilteredClassifier), subsequent batches are NOTE resampled."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option( "\tSpecify the random number seed (default 1)", "S", 1, "-S <num>")); newVector.addElement(new Option( "\tThe size of the output dataset, as a percentage of\n" +"\tthe input dataset (default 100)", "Z", 1, "-Z <num>")); newVector.addElement(new Option( "\tBias factor towards uniform class distribution.\n" +"\t0 = distribution in input data -- 1 = uniform distribution.\n" +"\t(default 0)", "B", 1, "-B <num>")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -S <num> * Specify the random number seed (default 1)</pre> * * <pre> -Z <num> * The size of the output dataset, as a percentage of * the input dataset (default 100)</pre> * * <pre> -B <num> * Bias factor towards uniform class distribution. * 0 = distribution in input data -- 1 = uniform distribution. * (default 0)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String seedString = Utils.getOption('S', options); if (seedString.length() != 0) { setRandomSeed(Integer.parseInt(seedString)); } else { setRandomSeed(1); } String biasString = Utils.getOption('B', options); if (biasString.length() != 0) { setBiasToUniformClass(Double.valueOf(biasString).doubleValue()); } else { setBiasToUniformClass(0); } String sizeString = Utils.getOption('Z', options); if (sizeString.length() != 0) { setSampleSizePercent(Double.valueOf(sizeString).doubleValue()); } else { setSampleSizePercent(100); } if (getInputFormat() != null) { setInputFormat(getInputFormat()); } } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [6]; int current = 0; options[current++] = "-B"; options[current++] = "" + getBiasToUniformClass(); options[current++] = "-S"; options[current++] = "" + getRandomSeed(); options[current++] = "-Z"; options[current++] = "" + getSampleSizePercent(); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String biasToUniformClassTipText() { return "Whether to use bias towards a uniform class. A value of 0 leaves the class " + "distribution as-is, a value of 1 ensures the class distribution is " + "uniform in the output data."; } /** * Gets the bias towards a uniform class. A value of 0 leaves the class * distribution as-is, a value of 1 ensures the class distributions are * uniform in the output data. * * @return the current bias */ public double getBiasToUniformClass() { return m_BiasToUniformClass; } /** * Sets the bias towards a uniform class. A value of 0 leaves the class * distribution as-is, a value of 1 ensures the class distributions are * uniform in the output data. * * @param newBiasToUniformClass the new bias value, between 0 and 1. */ public void setBiasToUniformClass(double newBiasToUniformClass) { m_BiasToUniformClass = newBiasToUniformClass; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String randomSeedTipText() { return "Sets the random number seed for subsampling."; } /** * Gets the random number seed. * * @return the random number seed. */ public int getRandomSeed() { return m_RandomSeed; } /** * Sets the random number seed. * * @param newSeed the new random number seed. */ public void setRandomSeed(int newSeed) { m_RandomSeed = newSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String sampeSizePercentTipText() { return "The subsample size as a percentage of the original set."; } /** * Gets the subsample size as a percentage of the original set. * * @return the subsample size */ public double getSampleSizePercent() { return m_SampleSizePercent; } /** * Sets the size of the subsample, as a percentage of the original set. * * @param newSampleSizePercent the subsample set size, between 0 and 100. */ public void setSampleSizePercent(double newSampleSizePercent) { m_SampleSizePercent = newSampleSizePercent; } /** * Returns the Capabilities of this filter. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enableAllAttributes(); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); return result; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input * instance structure (any instances contained in the object are * ignored - only the structure is required). * @return true if the outputFormat may be collected immediately * @throws Exception if the input format can't be set * successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); setOutputFormat(instanceInfo); return true; } /** * Input an instance for filtering. Filter requires all * training instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @throws IllegalStateException if no input structure has been defined */ public boolean input(Instance instance) { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (isFirstBatchDone()) { push(instance); return true; } else { bufferInput(instance); return false; } } /** * Signify that this batch of input to the filter is finished. * If the filter requires all instances prior to filtering, * output() may now be called to retrieve the filtered instances. * * @return true if there are instances pending output * @throws IllegalStateException if no input structure has been defined */ public boolean batchFinished() { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (!isFirstBatchDone()) { // Do the subsample, and clear the input instances. createSubsample(); } flushInput(); m_NewBatch = true; m_FirstBatchDone = true; return (numPendingOutput() != 0); } /** * Creates a subsample of the current set of input instances. The output * instances are pushed onto the output queue for collection. */ private void createSubsample() { int origSize = getInputFormat().numInstances(); int sampleSize = (int) (origSize * m_SampleSizePercent / 100); // Subsample that takes class distribution into consideration // Sort according to class attribute. getInputFormat().sort(getInputFormat().classIndex()); // Create an index of where each class value starts int [] classIndices = new int [getInputFormat().numClasses() + 1]; int currentClass = 0; classIndices[currentClass] = 0; for (int i = 0; i < getInputFormat().numInstances(); i++) { Instance current = getInputFormat().instance(i); if (current.classIsMissing()) { for (int j = currentClass + 1; j < classIndices.length; j++) { classIndices[j] = i; } break; } else if (current.classValue() != currentClass) { for (int j = currentClass + 1; j <= current.classValue(); j++) { classIndices[j] = i; } currentClass = (int) current.classValue(); } } if (currentClass <= getInputFormat().numClasses()) { for (int j = currentClass + 1; j < classIndices.length; j++) { classIndices[j] = getInputFormat().numInstances(); } } int actualClasses = 0; for (int i = 0; i < classIndices.length - 1; i++) { if (classIndices[i] != classIndices[i + 1]) { actualClasses++; } } // Create the new sample Random random = new Random(m_RandomSeed); // Convert pending input instances for(int i = 0; i < sampleSize; i++) { int index = 0; if (random.nextDouble() < m_BiasToUniformClass) { // Pick a random class (of those classes that actually appear) int cIndex = random.nextInt(actualClasses); for (int j = 0, k = 0; j < classIndices.length - 1; j++) { if ((classIndices[j] != classIndices[j + 1]) && (k++ >= cIndex)) { // Pick a random instance of the designated class index = classIndices[j] + random.nextInt(classIndices[j + 1] - classIndices[j]); break; } } } else { index = random.nextInt(origSize); } push((Instance)getInputFormat().instance(index).copy()); } } /** * Main method for testing this class. * * @param argv should contain arguments to the filter: * use -h for help */ public static void main(String [] argv) { runFilter(new Resample(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -